日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標中,點O為坐標原點,直線y=﹣x+4與x軸交于點A,過點A的拋物線y=ax2+bx與直線y=﹣x+4交于另一點B,且點B的橫坐標為1.

          (1)求a,b的值;
          (2)點P是線段AB上一動點(點P不與點A、B重合),過點P作PM∥OB交第一象限內(nèi)的拋物線于點M,過點M作MC⊥x軸于點C,交AB于點N,過點P作PF⊥MC于點F,設PF的長為t,MN的長為d,求d與t之間的函數(shù)關系式(不要求寫出自變量t的取值范圍);
          (3)在(2)的條件下,當SACN=SPMN時,連接ON,點Q在線段BP上,過點Q作QR∥MN交ON于點R,連接MQ、BR,當∠MQR﹣∠BRN=45°時,求點R的坐標.

          【答案】
          (1)解:∵y=﹣x+4與x軸交于點A,

          ∴A(4,0),

          ∵點B的橫坐標為1,且直線y=﹣x+4經(jīng)過點B,

          ∴B(1,3),

          ∵拋物線y=ax2+bx經(jīng)過A(4,0),B(1,3),

          ,

          解得:

          ∴a=﹣1,b=4;


          (2)解:方法一:

          如圖,作BD⊥x軸于點D,延長MP交x軸于點E,

          ∵B(1,3),A(4,0),

          ∴OD=1,BD=3,OA=4,

          ∴AD=3,

          ∴AD=BD,

          ∵∠BDA=90°,∠BAD=∠ABD=45°,

          ∵MC⊥x軸,∴∠ANC=∠BAD=45°,

          ∴∠PNF=∠ANC=45°,

          ∵PF⊥MC,

          ∴∠FPN=∠PNF=45°,

          ∴NF=PF=t,

          ∵∠PFM=∠ECM=90°,

          ∴PF∥EC,

          ∴∠MPF=∠MEC,

          ∵ME∥OB,∴∠MEC=∠BOD,

          ∴∠MPF=∠BOD,

          ∴tan∠BOD=tan∠MPF,

          = =3,

          ∴MF=3PF=3t,

          ∵MN=MF+FN,

          ∴d=3t+t=4t;

          方法二:

          延長MP交x軸于點M′,作M′N′∥MN交AB于N′,

          延長FP交M′N′于F′,∵M′N′∥MN,∴△PMN∽△PM′N′,

          ,∵O(0,0),B(1,3),

          ∴KOB=3,

          ∵PM∥OB,

          ∴KPM=KOB=3,則lPM:y=3x+b,設P(p,﹣p+4),則b=4﹣4p,

          ∴l(xiāng)PM:y=3x+4﹣4P,把y=0代入,∴x=

          ∴M′( ,0),

          ∵N′x=M′x,把x= 代入y=﹣x+4,

          ∴y=

          ∴N′( , ),∴M′N′= ,

          ∵PF′⊥M′N′,

          ∴PF′=p﹣ = ,


          (3)解:方法一:

          如備用圖,由(2)知,PF=t,MN=4t,

          ∴SPMN= MN×PF= ×4t×t=2t2,

          ∵∠CAN=∠ANC,

          ∴CN=AC,

          ∴SACN= AC2,

          ∵SACN=SPMN,

          AC2=2t2

          ∴AC=2t,

          ∴CN=2t,

          ∴MC=MN+CN=6t,

          ∴OC=OA﹣AC=4﹣2t,

          ∴M(4﹣2t,6t),

          由(1)知拋物線的解析式為:y=﹣x2+4x,

          將M(4﹣2t,6t)代入y=﹣x2+4x得:

          ﹣(4﹣2t)2+4(4﹣2t)=6t,

          解得:t1=0(舍),t2= ,

          ∴PF=NF= ,AC=CN=1,OC=3,MF= ,PN= ,PM= ,AN= ,

          ∵AB=3

          ∴BN=2 ,

          作NH⊥RQ于點H,

          ∵QR∥MN,

          ∴∠MNH=∠RHN=90°,∠RQN=∠QNM=45°,

          ∴∠MNH=∠NCO,

          ∴NH∥OC,

          ∴∠HNR=∠NOC,

          ∴tan∠HNR=tan∠NOC,

          = = ,

          設RH=n,則HN=3n,

          ∴RN= n,QN=3 n,

          ∴PQ=QN﹣PN=3 n﹣ ,

          ∵ON= =

          OB= = ,

          ∴OB=ON,∴∠OBN=∠BNO,

          ∵PM∥OB,

          ∴∠OBN=∠MPB,

          ∴∠MPB=∠BNO,

          ∵∠MQR﹣∠BRN=45°,∠MQR=∠MQP+∠RQN=∠MQP+45°,

          ∴∠BRN=∠MQP,

          ∴△PMQ∽△NBR,

          =

          = ,

          解得:n=

          ∴R的橫坐標為:3﹣ = ,R的縱坐標為:1﹣ =

          ∴R( , ).

          方法二:

          設M(t,﹣t2+4t),N(t,﹣t+4),

          ∴MN=﹣t2+4t+t﹣4=﹣t2+5t﹣4,

          ∴PF= (﹣t2+5t﹣4),

          ∴S△PMN= (﹣t2+5t﹣4)2= (t﹣4)2(t﹣1)2,

          ∵KAB=﹣1,∴∠OAB=45°,

          ∴CA=CN=4﹣t,

          ∴SACN= (t﹣4)2,

          ∵SACN=SPMN,

          (t﹣4)2(t﹣1)2= (t﹣4)2,

          ∴t1=﹣1,(舍),t2=3,

          ∴M(3,3),

          ∵MX=NX=3,

          ∴N(3,1),

          ∴ON= ,

          ∵B(1,3),

          ∴OB= ,

          ∴OB=ON,∠OBN=∠ONB,

          ∵OB∥MP

          ∴∠OBN=∠QPM,

          ∴∠ONB=∠QPM,∠RQA=45°,

          ∵∠MQR﹣∠BRN=45°,

          ∴∠BRN=∠MQP,

          ∴△BRN∽△MQP,

          ,

          ∵KPM=3,M(3,3),

          ∴l(xiāng)PM:y=3x﹣6,

          ∵lAB:y=﹣x+4,

          ∴P(2.5,1.5),

          設R(3t,t),

          ∴Q(3t,﹣3t+4),

          ,

          ∴t1= ,t2= (舍),

          ∴R( , ).


          【解析】先由直線解析式求出A、B坐標,代入拋物線解析式,可求出a、b;(2)利用平行線的性質(zhì)可推出∠MPF=∠BOD,tan∠BOD=tan∠MPF,用t的代數(shù)式表示線段,代入正切定義式中,得出關系式;(3)由已知∠MQR﹣∠BRN=45°,結合平行性質(zhì),可得∠BRN=∠MQP,進而證出△BRN∽△MQP,對應邊成比例,可列出關于t的方程,求出R坐標.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】某次學生夏令營活動,有小學生、初中生、高中生和大學生參加,共200人,各類學生人數(shù)比例見扇形統(tǒng)計圖.

          (1)參加這次夏令營活動的初中生共有多少人?

          (2)活動組織者號召參加這次夏令營活動的所有學生為貧困學生捐款.結果小學生每人

          捐款 5 元,初中生每人捐款 10 元,高中生每人捐款 15 元,大學生每人捐款 20 元.問平均 每人捐款是多少元?

          (3)在(2)的條件下,把每個學生的捐款數(shù)額(以元為單位)——記錄下來,則在這組數(shù)據(jù)中,眾數(shù)是多少?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分線交AC于點D,交AB于點E,CD=2,則AC等于( )

          A. 4 B. 5 C. 6 D. 8

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】學校舉辦“大愛鎮(zhèn)江”征文活動,小明為此次活動設計了一個以三座山為背景的圖標(如圖),現(xiàn)用紅、黃兩種顏色對圖標中的A、B、C三塊三角形區(qū)域分別涂色,一塊區(qū)域只涂一種顏色.

          (1)請用樹狀圖列出所有涂色的可能結果;
          (2)求這三塊三角形區(qū)域中所涂顏色是“兩塊黃色、一塊紅色”的概率.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖①、②、③,正三角形ABC、正方形ABCD、正五邊形ABCDE分別是⊙O的內(nèi)接三角形、內(nèi)接四邊形、內(nèi)接五邊形,點M、N分別從點B,C開始,以相同的速度中⊙O上逆時針運動.

          (1)求圖①中∠APB的度數(shù);
          (2)圖②中,∠APB的度數(shù)是 , 圖③中∠APB的度數(shù)是;
          (3)根據(jù)前面探索,你能否將本題推廣到一般的正n邊形情況?若能,寫出推廣問題和結論;若不能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】當自然數(shù)的個位數(shù)分別為0,1,2,…,9時,的個位數(shù)如表所示:

          個位數(shù)

          0

          1

          2

          3

          4

          5

          6

          7

          8

          9

          個位數(shù)

          0

          1

          4

          9

          6

          5

          6

          9

          4

          1

          個位數(shù)

          0

          1

          8

          7

          4

          5

          6

          3

          2

          9

          個位數(shù)

          0

          1

          6

          1

          6

          5

          6

          1

          6

          1

          ······

          10,1112,13這四個數(shù)中,當____________時,和數(shù)能被5整除.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】內(nèi)部員工互相交換職位是公司培養(yǎng)新人的一種模式,如圖1,位于成都的某集團總公司在距離成都市設有一個分公司,現(xiàn)對新入職1年的總公司小穎和分公司小王做職位交換學習,周日早上小穎開車從成都出發(fā),1個小時后,小王開車從市出發(fā),并以各自的速度勻速行駛,小王到達中途的地時突然接到分公司緊接通知只好原路原速返回,而小穎還是一直從成都直達市,結果兩人同時到達市.小穎和小王距各自出發(fā)地的路程(千米)與小王開車出發(fā)所用的時間(小時)的關系如圖2,結合圖象信息解答下列問題:

          1)小穎的速度是____________千米/時,圖2____________;小王的速度是____________千米/時;

          2)請寫出小王距他的出發(fā)地市的距離與他出發(fā)的時間的關系式;

          3)直接寫出小穎和小王相距100千米時的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】為加強學生身體鍛煉,某校開展體育“大課間”活動,學校決定在學生中開設A:籃球,B:立定跳遠,C:跳繩,D:跑步,E:排球五種活動項目.為了了解學生對五種項目的喜歡情況,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結果繪制成如圖所示的兩個統(tǒng)計圖.請結合圖中的信息解答下列問題:

          (1)在這項調(diào)查中,共調(diào)查了名學生;
          (2)請將兩個統(tǒng)計圖補充完整;
          (3)若該校有1200名在校學生,請估計喜歡排球的學生大約有多少人?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】我們知道對于一個圖形,通過不同的方法計算圖形的面積可以得到一個數(shù)學等式.例如:由圖1可得到.

          1)寫出由圖2所表示的數(shù)學等式:________.

          2)寫出由圖3所表示的數(shù)學等式:________.

          3)已知實數(shù),滿足,.

          ①求的值.

          ②求的值.

          查看答案和解析>>

          同步練習冊答案