日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,直線y=﹣ x+c與x軸交于點(diǎn)A(3,0),與y軸交于點(diǎn)B,拋物線y=﹣ x2+bx+c經(jīng)過(guò)點(diǎn)A,B.

          (1)求點(diǎn)B的坐標(biāo)和拋物線的解析式;
          (2)M(m,0)為x軸上一動(dòng)點(diǎn),過(guò)點(diǎn)M且垂直于x軸的直線與直線AB及拋物線分別交于點(diǎn)P,N.
          ①點(diǎn)M在線段OA上運(yùn)動(dòng),若以B,P,N為頂點(diǎn)的三角形與△APM相似,求點(diǎn)M的坐標(biāo);
          ②點(diǎn)M在x軸上自由運(yùn)動(dòng),若三個(gè)點(diǎn)M,P,N中恰有一點(diǎn)是其它兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),則稱M,P,N三點(diǎn)為“共諧點(diǎn)”.請(qǐng)直接寫(xiě)出使得M,P,N三點(diǎn)成為“共諧點(diǎn)”的m的值.

          【答案】
          (1)

          解:∵y=﹣ x+c與x軸交于點(diǎn)A(3,0),與y軸交于點(diǎn)B,

          ∴0=﹣2+c,解得c=2,

          ∴B(0,2),

          ∵拋物線y=﹣ x2+bx+c經(jīng)過(guò)點(diǎn)A,B,

          ,解得 ,

          ∴拋物線解析式為y=﹣ x2+ x+2


          (2)

          解:①由(1)可知直線解析式為y=﹣ x+2,

          ∵M(jìn)(m,0)為x軸上一動(dòng)點(diǎn),過(guò)點(diǎn)M且垂直于x軸的直線與直線AB及拋物線分別交于點(diǎn)P,N,

          ∴P(m,﹣ m+2),N(m,﹣ m2+ m+2),

          ∴PM=﹣ m+2,PA=3﹣m,PN=﹣ m2+ m+2﹣(﹣ m+2)=﹣ m2+4m,

          ∵△BPN和△APM相似,且∠BPN=∠APM,

          ∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,

          當(dāng)∠BNP=90°時(shí),則有BN⊥MN,

          ∴BN=OM=m,

          = ,即 = ,解得m=0(舍去)或m=2,

          ∴M(2,0);

          當(dāng)∠NBP=90°時(shí),則有 = ,

          ∵A(3,0),B(0,2),P(m,﹣ m+2),

          ∴BP= = m,AP= = (3﹣m),

          = ,解得m=0(舍去)或m= ,

          ∴M( ,0);

          綜上可知當(dāng)以B,P,N為頂點(diǎn)的三角形與△APM相似時(shí),點(diǎn)M的坐標(biāo)為(2,0)或( ,0);

          ②由①可知M(m,0),P(m,﹣ m+2),N(m,﹣ m2+ m+2),

          ∵M(jìn),P,N三點(diǎn)為“共諧點(diǎn)”,

          ∴有P為線段MN的中點(diǎn)、M為線段PN的中點(diǎn)或N為線段PM的中點(diǎn),

          當(dāng)P為線段MN的中點(diǎn)時(shí),則有2(﹣ m+2)=﹣ m2+ m+2,解得m=3(三點(diǎn)重合,舍去)或m= ;

          當(dāng)M為線段PN的中點(diǎn)時(shí),則有﹣ m+2+(﹣ m2+ m+2)=0,解得m=3(舍去)或m=﹣1;

          當(dāng)N為線段PM的中點(diǎn)時(shí),則有﹣ m+2=2(﹣ m2+ m+2),解得m=3(舍去)或m=﹣ ;

          綜上可知當(dāng)M,P,N三點(diǎn)成為“共諧點(diǎn)”時(shí)m的值為 或﹣1或﹣


          【解析】(1)把A點(diǎn)坐標(biāo)代入直線解析式可求得c,則可求得B點(diǎn)坐標(biāo),由A、B的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)①由M點(diǎn)坐標(biāo)可表示P、N的坐標(biāo),從而可表示出MA、MP、PN、PB的長(zhǎng),分∠NBP=90°和∠BNP=90°兩種情況,分別利用相似三角形的性質(zhì)可得到關(guān)于m的方程,可求得m的值;②用m可表示出M、P、N的坐標(biāo),由題意可知有P為線段MN的中點(diǎn)、M為線段PN的中點(diǎn)或N為線段PM的中點(diǎn),可分別得到關(guān)于m的方程,可求得m的值.
          【考點(diǎn)精析】關(guān)于本題考查的線段的中點(diǎn)和相似三角形的判定與性質(zhì),需要了解線段的中點(diǎn)到兩端點(diǎn)的距離相等;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方才能得出正確答案.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在△ABC中,∠B∠CAD⊥BC,垂足為DAE平分∠BAC

          1)已知∠B=60°,∠C=30°,求∠DAE的度數(shù);

          2)已知∠B=3∠C,求證:∠DAE=∠C

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,拋物線 x軸的負(fù)半軸交于點(diǎn)A,與y軸交于點(diǎn)B,連結(jié)AB.點(diǎn)C 在拋物線上,直線AC與y軸交于點(diǎn)D.

          (1)求c的值及直線AC的函數(shù)表達(dá)式;
          (2)點(diǎn)P在x軸的正半軸上,點(diǎn)Q在y軸正半軸上,連結(jié)PQ與直線AC交于點(diǎn)M,連結(jié)MO并延長(zhǎng)交AB于點(diǎn)N,若M為PQ的中點(diǎn).
          ①求證:△APM∽△AON;
          ②設(shè)點(diǎn)M的橫坐標(biāo)為m , 求AN的長(zhǎng)(用含m的代數(shù)式表示).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣5與x軸交于A(﹣1,0),B(5,0)兩點(diǎn),與y軸交于點(diǎn)C.

          (1)求拋物線的函數(shù)表達(dá)式;
          (2)若點(diǎn)D是y軸上的一點(diǎn),且以B,C,D為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)D的坐標(biāo);
          (3)如圖2,CE∥x軸與拋物線相交于點(diǎn)E,點(diǎn)H是直線CE下方拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn)H且與y軸平行的直線與BC,CE分別交于點(diǎn)F,G,試探究當(dāng)點(diǎn)H運(yùn)動(dòng)到何處時(shí),四邊形CHEF的面積最大,求點(diǎn)H的坐標(biāo)及最大面積;

          (4)若點(diǎn)K為拋物線的頂點(diǎn),點(diǎn)M(4,m)是該拋物線上的一點(diǎn),在x軸,y軸上分別找點(diǎn)P,Q,使四邊形PQKM的周長(zhǎng)最小,求出點(diǎn)P,Q的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知點(diǎn)P()在第一象限,則a的取值范圍在數(shù)軸上表示正確的是

          A. B. C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在ABC 中,點(diǎn) D 是邊 BC 上的點(diǎn)(與 B、C 兩點(diǎn)不重合,過(guò)點(diǎn) D DEAC,DFAB,分別交 AB、AC E、F 兩點(diǎn),下列說(shuō)法正確的是(

          A. AD 平分BAC,則四邊形 AEDF 是菱形

          B. BDCD,則四邊形 AEDF 是菱形

          C. AD 垂直平分 BC則四邊形 AEDF 是矩形

          D. ADBC,則四邊形 AEDF 是矩形

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】觀察下列等式:

          32(1)2;

          52()2;

          72()2;…

          1)請(qǐng)你根據(jù)以上規(guī)律,寫(xiě)出第6個(gè)等式

          2)第n個(gè)等式可以表示為 ,并請(qǐng)你證明你得到的等式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在7×7網(wǎng)格中,每個(gè)小正方形邊長(zhǎng)都為1.建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,使點(diǎn)A3,4)、C4,2).

          1)判斷△ABC的形狀,并求圖中格點(diǎn)△ABC的面積;

          2)在x軸上有一點(diǎn)P,使得PA+PC最小,則PA+PC的最小值為__________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】對(duì)于任意實(shí)數(shù) ,定義關(guān)于“ ”的一種運(yùn)算如下: .例如:
          (1)若 ,求 的值;
          (2)若 ,求 的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案