日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】定義:如果,那么稱bn的布谷數(shù),記為.

          例如:因?yàn)?/span>,所以

          因?yàn)?/span>,

          所以.

          1)根據(jù)布谷數(shù)的定義填空:g2=________________,g32=___________________.

          2)布谷數(shù)有如下運(yùn)算性質(zhì):

          m,n為正整數(shù),則.

          根據(jù)運(yùn)算性質(zhì)解答下列各題:

          ①已知,求的值;

          ②已知.的值.

          【答案】115;(2)①3.807,0.807;②;.

          【解析】

          1)根據(jù)布谷數(shù)的定義把232化為底數(shù)為2的冪即可得出答案;

          2)①根據(jù)布谷數(shù)的運(yùn)算性質(zhì), g14=g2×7=g2+g7),,再代入數(shù)值可得解;

          ②根據(jù)布谷數(shù)的運(yùn)算性質(zhì), 先將兩式化為,再代入求解.

          解:(1g2=g21=1
          g32=g25=5;
          故答案為132;

          2)①g14=g2×7=g2+g7),
          g7=2.807,g2=1,
          g14=3.807;

          g4=g22=2,

          =g7-g4=2.807-2=0.807;
          故答案為3.807,0.807;

          ②∵.

          ;

          .

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一個(gè)長方形運(yùn)動場被分隔成、、、個(gè)區(qū), 區(qū)是邊長為的正方形, 區(qū)是邊長為的正方形.

          (1)列式表示每個(gè)區(qū)長方形場地的周長,并將式子化簡;

          (2)列式表示整個(gè)長方形運(yùn)動場的周長,并將式子化簡;

          (3)如果, ,求整個(gè)長方形運(yùn)動場的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,已知在△ABC中,AB=AC,BD和CE分別是∠ABC和∠ACB的角平分線,且BD和CE相交于O點(diǎn).

          (1)試說明△OBC是等腰三角形;

          (2)連接OA,試判斷直線OA與線段BC的關(guān)系,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(1)又一個(gè)六一國際兒童節(jié)即將到來,學(xué)校打算給初一的學(xué)生贈送精美文具包,文具店規(guī)定一次購買400個(gè)以上,可享受8折優(yōu)惠.若給初一學(xué)生每人購買一個(gè),則不能享受優(yōu)惠,需付款1936元;若多買88個(gè),則可享受優(yōu)惠,同樣只需付款1936元,該校初一年級學(xué)生共有多少人?

          (2)初一(1)班為準(zhǔn)備六一聯(lián)歡會,欲購買價(jià)格分別為4元、8元和20元的三種獎品,每種獎品至少購買一件,共買16件,恰好用100元.若4元的獎品購買a件,先用含a的代數(shù)式表示另外兩種獎品的件數(shù),然后設(shè)計(jì)可行的購買方案.

          作為初二的大哥哥、大姐姐,你會解決這兩個(gè)問題嗎?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,平行四邊形ABCD中,以A為圓心,AB為半徑的圓交ADF,交BCG,延長BA交圓于E.

          (1)若ED與⊙A相切,試判斷GD與⊙A的位置關(guān)系,并證明你的結(jié)論;

          (2)在(1)的條件不變的情況下,若GC=CD,求∠C.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知一組數(shù)據(jù):x1,x2,x3,x4,x5,x6的平均數(shù)是2,方差是3,則另一組數(shù)據(jù):3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2,3x6﹣2的平均數(shù)和方差分別是( 。

          A. 2,3 B. 2,9 C. 4,25 D. 4,27

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

          (1)求證:ED為⊙O的切線;

          (2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

          【答案】(1)證明見解析;(2)

          【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
          (2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

          試題解析:(1)證明:連接OD

          OEAB,

          ∴∠COE=CAD,EOD=ODA

          OA=OD,

          ∴∠OAD=ODA,

          ∴∠COE=DOE,

          在△COE和△DOE中,

          ∴△COE≌△DOE(SAS),

          EDOD,

          ED的切線;

          (2)連接CD,交OEM,

          RtODE中,

          OD=32,DE=2,

          OEAB,

          ∴△COE∽△CAB

          AB=5,

          AC是直徑,

          EFAB

          SADF=S梯形ABEFS梯形DBEF

          ∴△ADF的面積為

          型】解答
          結(jié)束】
          25

          【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

          (1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

          (2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

          (3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在斜坡的頂部有一鐵塔AB,BCD的中點(diǎn),CD是水平的,在陽光的照射下,塔影DE留在坡面上.已知鐵塔底座寬CD=12 m,塔影長DE=18 m,小明和小華的身高都是1.6m,同一時(shí)刻,小明站在點(diǎn)E處,影子在坡面上,小華站在平地上,影子也在平地上,兩人的影長分別為2m1m,那么塔高AB為( 。

          A. 24m B. 22m C. 20m D. 18m

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:a是最大的負(fù)整數(shù),b是最小的正整數(shù),且ca+b,請回答下列問題:

          1)請直接寫出a,b,c的值:a   ;b   ;c   

          2a,b,c在數(shù)軸上所對應(yīng)的點(diǎn)分別為A,B,C,請?jiān)谌鐖D的數(shù)軸上表示出A,B,C三點(diǎn);

          3)在(2)的情況下.點(diǎn)A,BC開始在數(shù)軸上運(yùn)動,若點(diǎn)A,點(diǎn)C以每秒1個(gè)單位的速度向左運(yùn)動,同時(shí),點(diǎn)B以每秒5個(gè)單位長度的速度向右運(yùn)動,假設(shè)t秒鐘過后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB,請問:ABBC的值是否隨著時(shí)間的變化而改變?若變化,請說明理由;若不變,請求出ABBC的值.

          查看答案和解析>>

          同步練習(xí)冊答案