日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,拋物線C1y=x2+bx+c經(jīng)過原點(diǎn),與x軸的另一個交點(diǎn)為(2,0),將拋物線C1向右平移mm0個單位得到拋物線C2,C2x軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),交y軸于點(diǎn)C

          1)求拋物線C1的解析式及頂點(diǎn)坐標(biāo);

          2)以AC為斜邊向上作等腰直角三角形ACD,當(dāng)點(diǎn)D落在拋物線C2的對稱軸上時,求拋物線C2的解析式;

          3)若拋物線C2的對稱軸存在點(diǎn)P,使PAC為等邊三角形,求m的值.

          【答案】1)拋物線C1的解析式為y=x2﹣2x,頂點(diǎn)坐標(biāo)(1,﹣1);

          2)拋物線C2的解析式為:y=x﹣22﹣1;

          3m=

          【解析】試題分析:1)把(00)及(2,0)代入y=x2+bx+c,求出拋物線C1的解析式,即可求出拋物線C1的頂點(diǎn)坐標(biāo),

          2)先求出C2的解析式,確定AB,C的坐標(biāo),過點(diǎn)CCH⊥對稱軸DE,垂足為H,利用PAC為等腰直角三角形,求出角的關(guān)系可證得CHD≌△DEA,再由OC=EH列出方程求解得出m的值,即可得出C2的解析式.

          3)連接BC,BP,由拋物線對稱性可知AP=BP,由PAC為等邊三角形,可得AP=BP=CP,APC=60°,由C,AB三點(diǎn)在以點(diǎn)P為圓心,PA為半徑的圓上,可得BC=2OC,利用勾股定理求出OB=OC,列出方程求出m的值即可.

          試題解析:(1∵拋物線C1經(jīng)過原點(diǎn),與x軸的另一個交點(diǎn)為(2,0),

          ,

          解得,

          ∴拋物線C1的解析式為y=x2﹣2x,

          ∴拋物線C1的頂點(diǎn)坐標(biāo)(1﹣1),

          2)如圖1

          ∵拋物線C1向右平移mm0個單位得到拋物線C2,

          C2的解析式為y=x﹣m﹣12﹣1,

          Am,0),Bm+2,0),C0,m2+2m),

          過點(diǎn)CCH⊥對稱軸DE,垂足為H,

          ∵△ACD為等腰直角三角形,

          AD=CD,ADC=90°

          ∴∠CDH+ADE=90°

          ∴∠HCD=ADE,

          ∵∠DEA=90°

          ∴△CHD≌△DEA,

          AE=HD=1,CH=DE=m+1,

          EH=HD+DE=1+m+1=m+2,

          OC=EHm2+2m=m+2,解得m1=1,m2=﹣2(舍去),

          ∴拋物線C2的解析式為:y=x﹣22﹣1

          3)如圖2,連接BC,BP,

          由拋物線對稱性可知AP=BP,

          ∵△PAC為等邊三角形,

          AP=BP=CP,APC=60°

          C,A,B三點(diǎn)在以點(diǎn)P為圓心,PA為半徑的圓上,

          ∴∠CBO=CPA=30°

          BC=2OC,

          ∴由勾股定理得OB==OC,

          m2+2m=m+2

          解得m1=,m2=2(舍去),

          m=

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在平面直角坐標(biāo)系中,二次函數(shù)的圖象的頂點(diǎn)為D點(diǎn),與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn), A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),OB=OC ,tan∠ACO=

          (1)求這個二次函數(shù)的表達(dá)式;

          (2)經(jīng)過C、D兩點(diǎn)的直線,與x軸交于點(diǎn)E,在該拋物線上是否存在這樣的點(diǎn)F,使以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請求出點(diǎn)F的坐標(biāo);若不存在,請說明理由

          (3)若平行于x軸的直線與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長度

          (4)如圖2,若點(diǎn)G(2,y)是該拋物線上一點(diǎn),點(diǎn)P是直線AG下方的拋物線上一動點(diǎn),當(dāng)點(diǎn)P運(yùn)動到什么位置時,△APG的面積最大?求出此時P點(diǎn)的坐標(biāo)和△APG的最大面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】“低碳生活,綠色出行”,自行車正逐漸成為人們喜愛的交通工具.某運(yùn)動商城的自行車銷售量自2017年起逐月增加,據(jù)統(tǒng)計(jì),該商城1月份銷售自行車64輛,3月份銷售了100輛.

          (1)若該商城前4個月的自行車銷量的月平均增長率相同,問該商城4月份賣出多少輛自行車?

          (2)考慮到自行車需求不斷增加,該商城準(zhǔn)備投入3萬元再購進(jìn)一批兩種規(guī)格的自行車,已知A型車的進(jìn)價(jià)為500元/輛,售價(jià)為700元/輛,B型車進(jìn)價(jià)為1000元/輛,售價(jià)為1300元/輛.根據(jù)銷售經(jīng)驗(yàn),A型車不少于B型車的2倍,但不超過B型車的2.8倍.假設(shè)所進(jìn)車輛全部售完,為使利潤最大,該商城應(yīng)如何進(jìn)貨?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】關(guān)于x的方程有兩個不相等的實(shí)數(shù)根.

          1)求m的取值范圍;

          2)是否存在實(shí)數(shù)m,使方程的兩個實(shí)數(shù)根的倒數(shù)和等于0?若存在,求出m的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】用正三角形作平面鑲嵌,同一頂點(diǎn)周圍,正三角形的個數(shù)為 個.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下列說法:①所有無理數(shù)都是無限不循環(huán)小數(shù);②數(shù)軸上的所有點(diǎn)與有理數(shù)一一對應(yīng);③任意一個無理數(shù)的絕對值都是正數(shù);④平方根與立方根都等于它本身的數(shù)為0和1,其中,正確的個數(shù)是( 。

          A. 1個 B. 2個 C. 3個 D. 4個

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下列等式正確的是( )
          A.-︱3︱=︱-3︱
          B.︱3︱=︱-3︱
          C.︱-3︱=-3
          D.-﹙-3﹚=-︱-3︱

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】若|a-3|與(a+b)2互為相反數(shù),則代數(shù)式-2a2b的值為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】桂林市某氣象站測得六月份一周七天的降雨量分別為0,32,11,45,8,51,27(單位:mm),這組數(shù)據(jù)的極差是

          查看答案和解析>>

          同步練習(xí)冊答案