日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知:如圖,以等邊三角形ABC一邊AB為直徑的⊙O與邊AC、BC分別交于點D、E,過點D作DF⊥BC,垂足為F.
          (1)求證:DF為⊙O的切線;
          (2)若等邊三角形ABC的邊長為4,求DF的長;
          (3)寫出求圖中陰影部分的面積的思路.(不求計算結(jié)果)

          【答案】
          (1)證明:連接OD,如圖,

          ∵△ABC為等邊三角形,

          ∴∠A=∠C=60°,

          ∵OA=OD,

          ∴∠ODA=∠A=60°,

          ∴∠ODA=∠C,

          ∴OD∥BC,

          ∵DF⊥BC,

          ∴OD⊥BC,

          ∴DF為⊙O的切線


          (2)解:∵等邊三角形ABC的邊長為4,

          ∴AB=AC=4,∠C=60°,

          ∵AO=AD=2,

          ∴CD=2,

          在Rt△CDF中,∵sinC= ,

          ∴DF=2sin60°=


          (3)解:連接OE,如圖,

          ∵CF= CD=1,

          ∴EF=CE﹣CF=1,

          ∴S陰影部分=S梯形ODFE﹣S扇形DOE= (1+2) = π.


          【解析】(1)連接OD,如圖,利用等邊三角形的性質(zhì)得到∠A=∠C=60°,再證明OD∥BC,然后利用DF⊥BC可得OD⊥BC,再根據(jù)切線的判定定理可判斷DF為⊙O的切線;(2)利用等邊三角形的性質(zhì)得到AB=AC=4,∠C=60°,則CD=2,然后在Rt△CDF中利用正弦的定義可計算出DF;(3)連接OE,如圖,根據(jù)扇形的面積公式,利用S陰影部分=S梯形ODFE﹣S扇形DOE進行計算.
          【考點精析】掌握等邊三角形的性質(zhì)和切線的判定定理是解答本題的根本,需要知道等邊三角形的三個角都相等并且每個角都是60°;切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,銳角△ABC的高CDBE相交于點O , 圖中與△ODB相似的三角形有( 。
          A.1個
          B.2個
          C.3個
          D.4個

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某農(nóng)戶種植一種經(jīng)濟作物,總用水量y(米3)與種植時間x(天)之間的函數(shù)關(guān)系式如圖所示.

          (1)第20天的總用水量為多少米3?

          (2)當(dāng)x≥20時,求yx之間的函數(shù)關(guān)系式;

          (3)種植時間為多少天時,總用水量達到70003?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,O是直線AC上一點,OB是一條射線,OD平分∠AOBOE∠BOC內(nèi)部,∠BOE∠EOC,∠DOE70°,求∠EOC的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】同學(xué)們,足球是世界上第一大運動,你熱愛足球運動嗎?已知在足球比賽中,勝一場得3分,平一場得1分,負一場得0分,一隊共踢了30場比賽,負了9場,共得47分,那么這個隊勝了( 。

          A. 10 B. 11 C. 12 D. 13

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,∠ACB為銳角.點D為射線BC上一動點,連接AD,將線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,連結(jié)EC.如果AB=AC,∠BAC=90°. ①當(dāng)點D在線段BC上時(與點B不重合),如圖1,請你判斷線段CE、BD之間的位置和數(shù)量關(guān)系(直接寫出結(jié)論);
          ②當(dāng)點D在線段BC的延長線上時,請你在圖2畫出圖形,判斷①中的結(jié)論是否仍然成立,并證明你的判斷.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,點P是等邊ABC內(nèi)一點,PA=4,PB=3,PC=5.線段AP繞點A逆時針旋轉(zhuǎn)60°到AQ,連接PQ.(1)求PQ的長。(2)求∠APB的度數(shù)。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】數(shù)軸上,A、B兩點表示的數(shù)a,b滿足|a﹣6|+(b+12)2=0

          (1)a=   ,b=   ;

          (2)若小球MA點向負半軸運動、小球NB點向正半軸運動,兩球同時出發(fā),小球M運動的速度為每秒2個單位,當(dāng)M運動到OB的中點時,N點也同時運動到OA的中點,則小球N的速度是每秒   個單位;

          (3)若小球MN保持(2)中的速度,分別從A、B兩點同時出發(fā),經(jīng)過   秒后兩個小球相距兩個單位長度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】觀察下列各式:

          13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2

          13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;

          13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;

          ∴13+23+33+43+53=(______ )2= ______ .

          根據(jù)以上規(guī)律填空:

          (1)13+23+33+…+n3=(______ )2=[ ______ ]2

          (2)猜想:113+123+133+143+153= ______ .

          查看答案和解析>>

          同步練習(xí)冊答案