日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,在正方形ABCD中,AB=2,兩條對角線相交于點O,以OB、OC為鄰邊作第1個正方形OBB1C,對角線相交于點A1;再以A1B1、A1C為鄰邊作第2個正方形A1B1C1C對角線相交于點O1;再以O1B1、O1C1為鄰邊作第3個正方形O1B1B2C1,…依此類推.
          (1)求第1個正方形OBB1C的邊長a1和面積S1;
          (2)寫出第2個正方形A1B1C1C和第3個正方形的邊長a2,a3和面積S2,S3;
          (3)猜想第n個正方形的邊長an和面積Sn.(不需證明).
          精英家教網
          分析:由圖示可知,每一個正方形的邊長都等于上一個正方形對角線長度的一半,據(jù)此可進行解答.
          解答:解:(1)正方形ABCD中,AB=2,
          ∴BD=2
          2

          a1=BO=
          1
          2
          BD=
          2
          S1=BO2=(
          2
          )2

          故第一個正方形的邊長為
          2
          ,面積為2.

          (2)由圖示可知,a2=1,a3=
          2
          2
          ,S2=1,S2=
          1
          2

          故第二個正方形和第三個正方形的邊長分別為1,
          2
          2
          ,面積為1,
          1
          2


          (3)an=
          1
          (
          2
          )
          n-2
          ;Sn=
          1
          2n-2
          (10分)
          點評:解答本題要充分利用正方形的特殊性質:對角線長是邊長的
          2
          倍,及正方形的面積公式求解.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          精英家教網如圖所示,在正方形ABCD中,DE=EC,AD=4FD,則tan∠FBE=
           

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2013•鳳陽縣模擬)如圖所示,在正方形ABCD的對角線上取點E,使得∠BAE=15°,連結AE,CE.延長CE到F,連結BF,使得BC=BF.若AB=1,則下列結論:①AE=CE;②F到BC的距離為
          2
          2
          ;③BE+EC=EF;④S△AED=
          1
          4
          +
          2
          8
          ;⑤S△EBF=
          3
          12
          .其中正確的是
          ①③⑤
          ①③⑤

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖所示,在正方形ABCD中,△PCB和△QCD是正三角形,BP與QD相交于M,QC與PB相交于F,請你猜想QM與PM的大小關系?并證明你的猜想.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖所示,在正方形網格上有一個△ABC.
          (1)畫出△ABC關于直線MN的對稱圖形△A1B1C1
          (2)畫出△ABC關于點O的對稱圖形△A2B2C2;
          (3)若網格上的最小正方形邊長為1,求△ABC的面積;
          (4)△A2B2C2能否由△A1B1C1平移得到?能否由△A1B1C1旋轉得到?這兩個三角形(指△A1B1C1與△A2B2C2)存在什么樣的圖形變換關系?

          查看答案和解析>>

          同步練習冊答案