日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,已知AB=AC,BD⊥AC,試說明∠BAC=2∠CBD.
          分析:作AE⊥BC于E,根據(jù)等腰三角形三線合一的性質(zhì)可得∠BAC=2∠CAE,且∠CAE+∠C=90°,再根據(jù)等角的余角相等即可求解.
          解答:證明:作AE⊥BC于E.
          ∵AB=AC,AE⊥BC,
          ∴∠BAC=2∠CAE,且∠CAE+∠C=90°,
          ∵BD⊥AB,
          ∴∠CBD+∠C=90°,
          ∴∠CBD=∠CAE,
          ∴∠BAC=2∠CBD.
          點評:考查了等腰三角形三線合一的性質(zhì),等角的余角相等的性質(zhì),關(guān)鍵是作出輔助線解答.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          5、如圖所示,已知AB∥CD,EF平分∠CEG,∠1=80°,則∠2的度數(shù)為(  )

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          23、如圖所示,已知AB∥CD,分別探索下列四個圖形中∠P與∠A,∠C的關(guān)系.要求:(1)、(2)直接寫出結(jié)論,(3)、(4)寫出結(jié)論并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖所示,已知AB為圓O的直徑,AC為弦,OD∥BC交AC于D,OD=2cm,求BC的長.

          查看答案和解析>>

          同步練習冊答案