【題目】 如圖,已知點(diǎn)E在直角△ABC的斜邊AB上,以AE為直徑的⊙O與直角邊BC相切于點(diǎn)D.
(1)求證:AD平分∠BAC;
(2)若BE=2,BD=4,求⊙O的半徑.
【答案】
(1)證明:連接OD,
∵BC是⊙O的切線,
∴OD⊥BC,
又∵AC⊥BC,
∴OD∥AC,
∴∠2=∠3;
∵OA=OD,
∴∠1=∠3,
∴∠1=∠2,
∴AD平分∠BAC
(2)解:∵BC與圓相切于點(diǎn)D.
∴BD2=BEBA,
∵BE=2,BD=4,
∴BA=8,
∴AE=AB﹣BE=6,
∴⊙O的半徑為3
【解析】(1)先連接OD,再由OD⊥BC和AC⊥BC可知OD∥AC從而得證;(2)利用切割線定理可先求出AB,進(jìn)而求出圓的直徑,半徑則可求出.
【考點(diǎn)精析】利用切線的性質(zhì)定理和相似三角形的判定與性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AD∥BC,AD= BC,點(diǎn)M是邊BC的中點(diǎn),
=
,
=
.
(1)填空: = ,
= . (結(jié)果用
、
表示).
(2)直接在圖中畫出向量3 +
.(不要求寫作法,但要指出圖中表示結(jié)論的向量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b),(m≠1的實(shí)數(shù)).
其中正確的結(jié)論有(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組用儀器測(cè)測(cè)量湛江海灣大橋主塔的高度.如圖,在距主塔從AE60米的D處.用儀器測(cè)得主塔頂部A的仰角為68°,已知測(cè)量?jī)x器的高CD=1.3米,求主塔AE的高度(結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組用儀器測(cè)測(cè)量湛江海灣大橋主塔的高度.如圖,在距主塔從AE60米的D處.用儀器測(cè)得主塔頂部A的仰角為68°,已知測(cè)量?jī)x器的高CD=1.3米,求主塔AE的高度(結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對(duì)角線交于點(diǎn)O,連接OC,已知AC=5,OC=6 ,則另一直角邊BC的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD四邊的中點(diǎn)分別為E,F(xiàn),G,H,對(duì)角線AC與BD相交于點(diǎn)O,若四邊形EFGH的面積是3,則四邊形ABCD的面積是( )
A.3
B.6
C.9
D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某縣政府為了迎接“八一”建軍節(jié),加強(qiáng)軍民共建活動(dòng),計(jì)劃從花園里拿出1430盆甲種花卉和1220盆乙種花卉,搭配成A、B兩種園藝造型共20個(gè),在城區(qū)內(nèi)擺放,以增加節(jié)日氣氛,已知搭配A、B兩種園藝造型各需甲、乙兩種花卉數(shù)如表所示:(單位:盆)
(1)某校某年級(jí)一班課外活動(dòng)小組承接了這個(gè)園藝造型搭配方案的設(shè)計(jì),問符合題意的搭配方案有幾種?請(qǐng)你幫忙設(shè)計(jì)出來.
(2)如果搭配及擺放一個(gè)A造型需要的人力是8人次,搭配及擺放一個(gè)B造型需要的人力是11人次,哪種方案使用人力的總?cè)舜螖?shù)最少,請(qǐng)說明理由.
造型 | A | B |
甲種 | 80 | 50 |
乙種 | 40 | 90 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足是G,F(xiàn)是CG的中點(diǎn),延長(zhǎng)AF交⊙O于E,CF=2,AF=3,則EF的長(zhǎng)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com