日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,拋物線y=ax2+bx-3與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且經(jīng)過點(diǎn)(2,-3a),對稱軸是直線x=1,頂點(diǎn)是M.
          (1)求拋物線對應(yīng)的函數(shù)表達(dá)式;
          (2)經(jīng)過C,M兩點(diǎn)作直線與x軸交于點(diǎn)N,在拋物線上是否存在這樣的點(diǎn)P,使以點(diǎn)P,A,C,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
          (3)設(shè)直線y=-x+3與y軸的交點(diǎn)是D,在線段BD上任取一點(diǎn)E(不與B,D重合),經(jīng)過A,B,E三點(diǎn)的圓交直線BC于點(diǎn)F,試判斷△AEF的形狀,并說明理由;
          (4)當(dāng)E是直線y=-x+3上任意一點(diǎn)時,(3)中的結(jié)論是否成立(請直接寫出結(jié)論).
          分析:(1)依題意聯(lián)立方程組求出a,b的值后可求出函數(shù)表達(dá)式.
          (2)分別令x=0,y=0求出A、B、C三點(diǎn)的坐標(biāo),然后易求直線CM的解析式.證明四邊形ANCP為平行四邊形可求出點(diǎn)P的坐標(biāo).
          (3)求出直線y=-x+3與坐標(biāo)軸的交點(diǎn)D,B的坐標(biāo).然后證明∠AFE=∠ABE=45°,AE=AF,可證得三角形AEF是等腰直角三角形.
          (4)根據(jù)(3)中所求,即可得出當(dāng)E是直線y=-x+3上任意一點(diǎn)時,(3)中的結(jié)論仍成立.
          解答:解:(1)根據(jù)題意,得
          -3a=4a+2b-3
          -
          b
          2a
          =1

          解得
          a=1
          b=-2
          ,
          ∴拋物線對應(yīng)的函數(shù)表達(dá)式為y=x2-2x-3;

          (2)存在.連接AP,CP,
          如下圖所示:
          精英家教網(wǎng)
          在y=x2-2x-3中,令x=0,得y=-3.
          令y=0,得x2-2x-3=0,
          ∴x1=-1,x2=3.
          ∴A(-1,0),B(3,0),C(0,-3).
          又y=(x-1)2-4,
          ∴頂點(diǎn)M(1,-4),
          容易求得直線CM的表達(dá)式是y=-x-3.
          在y=-x-3中,令y=0,得x=-3.
          ∴N(-3,0),
          ∴AN=2,
          在y=x2-2x-3中,令y=-3,得x1=0,x2=2.
          ∴CP=2,
          ∴AN=CP.
          ∵AN∥CP,
          ∴四邊形ANCP為平行四邊形,此時P(2,-3);

          (3)精英家教網(wǎng)
          △AEF是等腰直角三角形.
          理由:在y=-x+3中,令x=0,得y=3,令y=0,得x=3.
          ∴直線y=-x+3與坐標(biāo)軸的交點(diǎn)是D(0,3),B(3,0).
          ∴OD=OB,
          ∴∠OBD=45°,
          又∵點(diǎn)C(0,-3),
          ∴OB=OC.
          ∴∠OBC=45度,
          由圖知∠AEF=∠ABF=45°,∠AFE=∠ABE=45°,
          ∴∠EAF=90°,且AE=AF.
          ∴△AEF是等腰直角三角形;

          (4)當(dāng)點(diǎn)E是直線y=-x+3上任意一點(diǎn)時,(3)中的結(jié)論:△AEF是等腰直角三角形成立.
          點(diǎn)評:本題綜合考查了等腰直角三角形的判定以及二次函數(shù)結(jié)合圖形的應(yīng)用,難度較大.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標(biāo)系中可能是(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,拋物線y1=-ax2-ax+1經(jīng)過點(diǎn)P(-
          1
          2
          ,
          9
          8
          ),且與拋物線y2=ax2-ax-1相交于A,B兩點(diǎn).
          (1)求a值;
          (2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫出一條正確的結(jié)論,并通過計(jì)算說明;
          (3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動點(diǎn)Q(x,0),且xA≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點(diǎn),試問當(dāng)x為何值時,線段CD有最大值,其最大值為多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,拋物線y=-ax2+ax+6a交x軸負(fù)半軸于點(diǎn)A,交x軸正半軸于點(diǎn)B,交y軸正半軸于點(diǎn)D,精英家教網(wǎng)O為坐標(biāo)原點(diǎn),拋物線上一點(diǎn)C的橫坐標(biāo)為1.
          (1)求A,B兩點(diǎn)的坐標(biāo);
          (2)求證:四邊形ABCD的等腰梯形;
          (3)如果∠CAB=∠ADO,求α的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,拋物線的頂點(diǎn)為點(diǎn)D,與y軸相交于點(diǎn)A,直線y=ax+3與y軸也交于點(diǎn)A,矩形ABCO的頂點(diǎn)B在精英家教網(wǎng)此拋物線上,矩形面積為12,
          (1)求該拋物線的對稱軸;
          (2)⊙P是經(jīng)過A、B兩點(diǎn)的一個動圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點(diǎn)的距離為4時,求圓心P的坐標(biāo);
          (3)若線段DO與AB交于點(diǎn)E,以點(diǎn)D、A、E為頂點(diǎn)的三角形是否有可能與以點(diǎn)D、O、A為頂點(diǎn)的三角形相似,如果有可能,請求出點(diǎn)D坐標(biāo)及拋物線解析式;如果不可能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,拋物線y=ax2+ax+c與y軸交于點(diǎn)C(0,-2),精英家教網(wǎng)與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(-2,0).
          (1)求該拋物線的解析式;
          (2)M是線段OB上一動點(diǎn),N是線段OC上一動點(diǎn),且ON=2OM,分別連接MC、MN.當(dāng)△MNC的面積最大時,求點(diǎn)M、N的坐標(biāo);
          (3)若平行于x軸的動直線與該拋物線交于點(diǎn)P,與線段AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(-1,0).問:是否存在直線l,使得△ODF是等腰三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案