【題目】已知在△ABC中,AB=AC,∠BAC=α,直線l經(jīng)過點A(不經(jīng)過點B或點C),點C關(guān)于直線l的對稱點為點D,連接BD,CD.
(1)如圖1,
①求證:點B,C,D在以點A為圓心,AB為半徑的圓上;
②直接寫出∠BDC的度數(shù)(用含α的式子表示)為 ;
(2)如圖2,當(dāng)α=60°時,過點D作BD的垂線與直線l交于點E,求證:AE=BD;
(3)如圖3,當(dāng)α=90°時,記直線l與CD的交點為F,連接BF.將直線l繞點A旋轉(zhuǎn)的過程中,在什么情況下線段BF的長取得最大值?若AC=2a,試寫出此時BF的值.
【答案】(1)①詳見解析;②α;(2)詳見解析;(3)當(dāng)B、O、F三點共線時BF最長,(
+
)a
【解析】
(1)①由線段垂直平分線的性質(zhì)可得AD=AC=AB,即可證點B,C,D在以點A為圓心,AB為半徑的圓上;
②由等腰三角形的性質(zhì)可得∠BAC=2∠BDC,可求∠BDC的度數(shù);
(2)連接CE,由題意可證△ABC,△DCE是等邊三角形,可得AC=BC,∠DCE=60°=∠ACB,CD=CE,根據(jù)“SAS”可證△BCD≌△ACE,可得AE=BD;
(3)取AC的中點O,連接OB,OF,BF,由三角形的三邊關(guān)系可得,當(dāng)點O,點B,點F三點共線時,BF最長,根據(jù)等腰直角三角形的性質(zhì)和勾股定理可求,
,即可求得BF
(1)①連接AD,如圖1.
∵點C與點D關(guān)于直線l對稱,
∴AC = AD.
∵AB= AC,
∴AB= AC = AD.
∴點B,C,D在以A為圓心,AB為半徑的圓上.
②∵AD=AB=AC,
∴∠ADB=∠ABD,∠ADC=∠ACD,
∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,
∴∠BAM=2∠ADB,∠MAC=2∠ADC,
∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α
∴∠BDC=α
故答案為:α.
(2連接CE,如圖2.
∵∠BAC=60°,AB=AC,
∴△ABC是等邊三角形,
∴BC=AC,∠ACB=60°,
∵∠BDC=α,
∴∠BDC=30°,
∵BD⊥DE,
∴∠CDE=60°,
∵點C關(guān)于直線l的對稱點為點D,
∴DE=CE,且∠CDE=60°
∴△CDE是等邊三角形,
∴CD=CE=DE,∠DCE=60°=∠ACB,
∴∠BCD=∠ACE,且AC=BC,CD=CE,
∴△BCD≌△ACE(SAS)
∴BD=AE,
(3)如圖3,取AC的中點O,連接OB,OF,BF,
,
F是以AC為直徑的圓上一點,設(shè)AC中點為O,
∵在△BOF中,BO+OF≥BF,
當(dāng)B、O、F三點共線時BF最長;
如圖,過點O作OH⊥BC,
∵∠BAC=90°,AB=AC=2a,
∴,∠ACB=45°,且OH⊥BC,
∴∠COH=∠HCO=45°,
∴OH=HC,
∴,
∵點O是AC中點,AC=2a,
∴,
∴,
∴BH=3a,
∴,
∵點C關(guān)于直線l的對稱點為點D,
∴∠AFC=90°,
∵點O是AC中點,
∴,
∴,
∴當(dāng)B、O、F三點共線時BF最長;最大值為(+
)a.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,
是
邊上一點,連接
,過
作
于
,交
于
.
(1)如圖1,連接,當(dāng)
,
時,求
的長;
(2)如圖2,對角線,
交于點
.連接
,若
,求
的長;
(3)如圖3,對角線,
交于點
.連接
,
,若
,試探索
與
的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)(
是常數(shù),
)的圖象與
軸交于點
和點
(點
在點
的右側(cè)),與
軸交于點
,連接
.
(1)用含的代數(shù)式表示點
和點
的坐標(biāo);
(2)垂直于軸的直線
在點
與點
之間平行移動,且與拋物線和直線
分別交于點
,設(shè)點
的橫坐標(biāo)為
,線段
的長為
.
①當(dāng)時,求
的值;
②若,則當(dāng)
為何值時,
取得最大值,并求出這個最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線.
(1)求拋物線的開口方向、對稱軸和頂點坐標(biāo);
(2)將拋物線向下平移,得拋物線
,使拋物線
的頂點落在直線
上.
①求拋物線的解析式;
②拋物線與
軸的交點為
,
(點
在點
的左側(cè)),拋物線
的對稱軸于
軸的交點為
,點
是線段
上的一點,過點
作直線
軸,交拋物線
于點
,點
關(guān)于拋物線對稱軸的對稱點為
,點
是線段
上一點,且
,連接
,作
交
軸于點
,且
,求點
的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,直徑AB垂直弦CD于E,過點A作∠DAF=∠DAB,過點D作AF的垂線,垂足為F,交AB的延長線于點P,連接CO并延長交⊙O于點G,連接EG.
(1)求證:DF是⊙O的切線;
(2)若AD=DP,OB=3,求的長度;
(3)若DE=4,AE=8,求線段EG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某旅行團(tuán)計劃今年暑假組織一個老年人團(tuán)去昆明旅游,預(yù)定賓館住宿時,有住宿條件一樣的甲、乙兩家賓館供選擇,其收費(fèi)標(biāo)準(zhǔn)為每人每天120元,并且各自推出不同的優(yōu)惠方案.甲家是35人(含35人)以內(nèi)的按標(biāo)準(zhǔn)收費(fèi),超過35人的,超出部分按九折收費(fèi);乙家是45人(含45人)以內(nèi)的按標(biāo)準(zhǔn)收費(fèi),超過45人的,超出部分按八折收費(fèi).設(shè)老年團(tuán)的人數(shù)為.
(1)根據(jù)題意,用含有的式子填寫下表:
甲賓館收費(fèi)/元 | 5280 | |||
乙賓館收費(fèi)/元 | 5400 |
(2)當(dāng)老年人團(tuán)的人數(shù)為何值時,在甲、乙兩家賓館的花費(fèi)相同?如果老年人團(tuán)的人數(shù)超過60人,在哪家賓館住宿比較省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和爸爸周末步行去游泳館游泳,爸爸先出發(fā)了一段時間后小明才出發(fā),途中小明在離家米處的報亭休息了一段時間后繼續(xù)按原來的速度前往游泳館.爸爸、小明離家的距離
(單位:米),
單位:米)與小明所走時間
(單位:分鐘)之間的函數(shù)關(guān)系如圖所示,請結(jié)合圖象信息解答下列問題:
分別求出爸爸離家的距離
和小明到達(dá)報亭前離家的距離
與時間
之間的函數(shù)關(guān)系式;
求小明在報亭休息了多長時間遇到姍姍來遲的爸爸?
若游泳館離小明家
米,請你通過計算說明誰先到達(dá)游泳館?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我們學(xué)習(xí)過的數(shù)學(xué)教科書中,有一個數(shù)學(xué)活動,其具體操作過程是:
第一步:對折矩形紙片,使
與
重合,得到折痕
,把紙片展開(如圖①);
第二步:再一次折疊紙片,使點落在
上,并使折痕經(jīng)過點
,得到折痕
,同時得到線段
(如圖②).
如圖②所示建立平面直角坐標(biāo)系,請解答以下問題:
(Ⅰ)設(shè)直線的解析式為
,求
的值;
(Ⅱ)若的延長線與矩形
的邊
交于點
,設(shè)矩形的邊
,
;
(i)若,
,求
點的坐標(biāo);
(ii)請直接寫出、
應(yīng)該滿足的條件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,對角線
與
相交于點
點
為
的中點,連接
的延長線交
的延長線于點
連接
.
(1)求證:;
(2)若判斷四邊形
的形狀,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com