日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知△ABC是等腰直角三角形,ABAC,D為平面內(nèi)的任意一點(diǎn),且滿足CDAC,若△ADB是以AD為腰的等腰三角形,則∠CDB的度數(shù)為_____

          【答案】45°或135°.

          【解析】

          當(dāng)ADB是以AD為腰的等腰三角形,可以分兩種情況進(jìn)行討論:①ADAB,②ADBD;

          ①當(dāng)ADAB時(shí),又分兩種情況:

          當(dāng)點(diǎn)DAC邊上方時(shí),如圖1所示.由ACD為等邊三角形,得∠CAD60°,根據(jù)角的關(guān)系可得結(jié)論;

          當(dāng)點(diǎn)DAC邊下方時(shí),如圖2所示.同理可得結(jié)論;

          ②當(dāng)ADBD時(shí)又分兩種情況:

          當(dāng)點(diǎn)DBC的上方,如圖3所示.作輔助線,證明∠EDA=∠ADC,根據(jù)角平分線的性質(zhì)得:AFAEABAC,利用直角三角形30°角的判定得:RtAFC中,∠ACF30°,從而得出結(jié)論;

          當(dāng)DBC的下方時(shí),如圖4,同理構(gòu)建矩形AEFC,由CFABACCD,得RtCFD中,∠CDF30°,可得結(jié)論.

          解:①當(dāng)ADAB時(shí),

          ABAC,CDAC,ADAB,

          ACADCD,

          ∴△ACD為等邊三角形.

          當(dāng)點(diǎn)DAC邊上方時(shí),如圖1所示.

          ∵△ABC是等腰直角三角形,ABACACD為等邊三角形,

          ∴∠BAC90°,∠CAD60°,

          ∴∠BAD=∠BAC+CAD150°

          ABAD

          ∴∠ABD=∠ADB180°﹣∠BAD)=15°,

          ∴∠CDB=∠ADC﹣∠ADB60°15°45°;

          當(dāng)點(diǎn)DAC邊下方時(shí),如圖2所示.

          ∵∠BAC90°,∠CAD60°,

          ∴∠BAD=∠BAC﹣∠CAD30°

          ABAD

          ∴∠ABD=∠ADB180°﹣∠BAD)=75°,

          ∴∠CDB=∠ADB+ADC75°+60°135°

          ②當(dāng)ADBD時(shí),

          當(dāng)點(diǎn)DBC的上方,如圖3所示.

          DDEABE,過AAFCDF,

          ∴∠BED90°,

          ∵∠BAC90°,

          ∴∠BED=∠BAC

          EDAC,

          ∴∠EDA=∠DAC,

          ADCD,

          ∴∠ADC=∠DAC

          ∴∠EDA=∠ADC,

          AFAEABAC

          RtAFC中,∠ACF30°

          ∴∠ADC75°,

          ∴∠ADB2ADE2ADC150°,

          ∴∠CDB360°150°75°135°;

          當(dāng)DBC的下方時(shí),如圖4,

          DDEACE,過CCFEDF,

          ∴∠AEF=∠BAC=∠EFC90°

          ∴四邊形AEFC是矩形,

          CFAE

          ADBD,DEAB

          AEAB,∠ADE=∠BDE,

          CFABACCD,

          RtCFD中,∠CDF30°

          ACED,

          ∴∠CAD=∠ADE

          ACCD,

          ∴∠CAD=∠ADC

          ∴∠CDA=∠ADECDF15°,

          ∴∠ADB30°,

          ∴∠CDB45°

          綜上所述,則∠CDB的度數(shù)為45°135°;

          故答案為:45°135°

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,矩形ABCD中,AB6,AD4,點(diǎn)EBC的中點(diǎn),點(diǎn)FAB上,FB2,P是矩形上一動(dòng)點(diǎn).若點(diǎn)P從點(diǎn)F出發(fā),沿FADC的路線運(yùn)動(dòng),當(dāng)∠FPE30°時(shí),FP的長為_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為了解學(xué)生對博鰲論壇會(huì)的了解情況,某中學(xué)隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果記作非常了解,了解,了解較少,不了解.四類分別統(tǒng)計(jì),并繪制了下列兩幅統(tǒng)計(jì)圖(不完整).請根據(jù)圖中信息,解答下列問題:

          (1)此次共調(diào)查了______名學(xué)生;扇形統(tǒng)計(jì)圖中所在的扇形的圓心角度數(shù)為______;

          (2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

          (3)若該校共有1600名學(xué)生,請你估計(jì)對博鰲論壇會(huì)的了解情況為非常了解的學(xué)生約有多少人?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機(jī)地傳給B,C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機(jī)地傳給其他兩人中的某一人.

          (1)求兩次傳球后,球恰在B手中的概率;

          (2)求三次傳球后,球恰在A手中的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】隨著新能源汽車的發(fā)展,某公交公司將用新能源公交車淘汰某一條線路上“冒黑煙”較嚴(yán)重的燃油公交車,計(jì)劃購買A型和B型新能源公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需300萬元;若購買A型公交車2輛,B型公交車1輛,共需270萬元,

          (1)求購買A型和B型公交車每輛各需多少萬元?

          (2)預(yù)計(jì)在該條線路上A型和B型公交車每輛年均載客量分別為80萬人次和100萬人次.若該公司購買A型和B型公交車的總費(fèi)用不超過1000萬元,且確保這10輛公交車在該線路的年均載客量總和不少于900萬人次,則該公司有哪幾種購車方案?哪種購車方案總費(fèi)用最少?最少總費(fèi)用是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】九(1)班開展了“讀一本好書”的活動(dòng),班委會(huì)對學(xué)生閱讀書籍的情況進(jìn)行了問卷調(diào)查,問卷設(shè)置了“小說”“戲劇”“散文”“其他”四個(gè)類別,每位同學(xué)僅選一項(xiàng).根據(jù)調(diào)査結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.

          類別

           頻數(shù)(人數(shù))

           頻率

           小說

          a

          0.5

          戲劇

          4

          散文

          10

          0.25

           其他

          6

           合計(jì)

          b

          1

          根據(jù)圖表提供的信息,回答下列問題:

          1)直接寫出:a   b   m   ;

          2)在調(diào)查問卷中,甲、乙、丙、丁四位同學(xué)選擇了“戲劇”類,現(xiàn)從中任意選出2名同學(xué)參加學(xué)校的戲劇社團(tuán),請求選取的2人恰好是甲和乙的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形ABCD中,EAB的中點(diǎn),連接DE、CE.

          (1)求證:ADE≌△BCE;

          (2)若AB=6,AD=4,求CDE的周長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(操作發(fā)現(xiàn))

          如圖①,在邊長為1個(gè)單位長度的小正方形組成的網(wǎng)格中,ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上.

          1)請按要求畫圖:將ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)90°,點(diǎn)B的對應(yīng)點(diǎn)為B′,點(diǎn)C的對應(yīng)點(diǎn)為C′,連接BB′;

          2)在(1)所畫圖形中,∠AB′B=____

          (問題解決)

          3)如圖②,在等邊三角形ABC中,AC=7,點(diǎn)PABC內(nèi),且∠APC=90°,∠BPC=120°,求APC的面積.

          小明同學(xué)通過觀察、分析、思考,對上述問題形成了如下想法:

          想法一:將APC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)60°,得到AP′B,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系;

          想法二:將APB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)60°,得到AP′C′,連接PP′,尋找PAPB,PC三條線段之間的數(shù)量關(guān)系.

          請參考小明同學(xué)的想法,完成該問題的解答過程.(一種方法即可)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,對稱軸為直線x1的拋物線經(jīng)過A(﹣1,0)、C0,3)兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為B,點(diǎn)Dy軸上,且OB3OD

          1)求該拋物線的表達(dá)式;

          2)設(shè)該拋物線上的一個(gè)動(dòng)點(diǎn)P的橫坐標(biāo)為t

          ①當(dāng)0t3時(shí),求四邊形CDBP的面積St的函數(shù)關(guān)系式,并求出S的最大值;

          ②點(diǎn)Q在直線BC上,若以CD為邊,點(diǎn)CD、Q、P為頂點(diǎn)的四邊形是平行四邊形,請求出所有符合條件的點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊答案