日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知等邊△ABC和點(diǎn)P,設(shè)點(diǎn)P到△ABC三邊的AB、AC、BC的距離分別是h1,h2,h3,△ABC的高為h,請你探索以下問題:
          (1)若點(diǎn)P在一邊BC上(圖1),此時h3=0,問h1、h2與h之間有怎樣的數(shù)量關(guān)系?請說明理由;
          (2)若當(dāng)點(diǎn)P在△ABC內(nèi)(圖2),此時h1、h2、h3與h之間有怎樣的數(shù)量關(guān)系?請說明理由;
          (3)若點(diǎn)P在△ABC外(圖3),此時h1、h2、h3與h之間有怎樣的數(shù)量關(guān)系
          h=h1+h2-h3
          h=h1+h2-h3
          .(請直接寫出你的猜想,不需要說明理由.)
          分析:把點(diǎn)P與各頂點(diǎn)分別連接起來.根據(jù)組合圖形的面積與分割成的圖形面積之間的關(guān)系建立關(guān)系式,然后根據(jù)等邊三角形性質(zhì)求解.
          解答:解:
          (1)h=h1+h2,理由如下:
          連接AP,則 S△ABC=S△ABP+S△APC
          1
          2
          BC•AM=
          1
          2
          AB•PD+
          1
          2
          AC•PF
          1
          2
          BC•h=
          1
          2
          AB•h1+
          1
          2
          AC•h2
          又∵△ABC是等邊三角形
          ∴BC=AB=AC,
          ∴h=h1+h2

          (2)h=h1+h2+h3 ,理由如下:
          連接AP、BP、CP,則 S△ABC=S△ABP+S△BPC+S△ACP
          1
          2
          BC•AM=
          1
          2
          AB•PD+
          1
          2
          AC•PF+
          1
          2
          BC•PE
          1
          2
          BC•h=
          1
          2
          AB•h1+
          1
          2
          AC•h2+
          1
          2
          BC•h3
          又∵△ABC是等邊三角形,
          ∴BC=AB=AC.
          ∴h=h1+h2+h3

          (3)h=h1+h2-h3
          當(dāng)點(diǎn)P在△ABC外時,結(jié)論h1+h2+h3=h不成立.此時,它們的關(guān)系是h1+h2-h3=h.
          理由如下:連接PB,PC,PA
          由三角形的面積公式得:S△ABC=S△PAB+S△PAC-S△PBC,
          1
          2
          BC•AM=
          1
          2
          AB•PD+
          1
          2
          AC•PE-
          1
          2
          BC•PF,
          ∵AB=BC=AC,
          ∴h1+h2-h3=h,
          即h1+h2-h3=h.
          點(diǎn)評:此題考查等邊三角形的性質(zhì),運(yùn)用等積法建立關(guān)系構(gòu)思巧妙,也是此題的難點(diǎn).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知等邊△ABC和點(diǎn)P,設(shè)點(diǎn)P到△ABC三邊AB、AC、BC(或其延長線)的距離分別為h1、h2、h3,△ABC的高為h.
          在圖(1)中,點(diǎn)P是邊BC的中點(diǎn),此時h3=0,可得結(jié)論:h1+h2+h3=h.
          在圖(2),(3),(4),(5)中,點(diǎn)P分別在線段MC上、MC延長線上、△ABC內(nèi)、△ABC外.
          (1)請?zhí)骄浚簣D(2),(3),(4),(5)中,h1、h2、h3、h之間的關(guān)系;(直接寫出結(jié)論)圖②-⑤中的關(guān)系依次是:
          h1+h2+h3=h;h1-h2+h3=h;h1+h2+h3=h;h1+h2-h3=h;
          (2)證明圖(2)所得結(jié)論;
          (3)證明圖(4)所得結(jié)論;
          (4)(附加題2分)在圖(6)中,若四邊形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,點(diǎn)P在梯形內(nèi),且點(diǎn)P到四邊BR、RS、SC、CB的距離分別是h1、h2、h3、h4,橋形的高為h,則h1、h2、h3、h4、h之間的關(guān)系為:h1+h3+h4=
          mhm-n
          .圖(4)與圖(6)中的等式有何關(guān)系.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          31、已知等邊△ABC和點(diǎn)P,設(shè)點(diǎn)P到△ABC三邊AB、AC、BC的距離分別為h1、h2、h3,△ABC的高為h.
          “若點(diǎn)P在一邊BC上(如圖1),此時h3=0,可得結(jié)論h1+h2+h3=h”
          請直接應(yīng)用上述信息解決下列問題:
          (1)當(dāng)點(diǎn)P在△ABC內(nèi)(如圖2),(2)點(diǎn)P在△ABC外(如圖3)這兩種情況時,上述結(jié)論是否還成立?若成立,請給予證明;若不成立,h1、h2、h3與h之間的關(guān)系如何?請寫出你的猜想,不需證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知等邊△ABC和點(diǎn)P,設(shè)點(diǎn)P到△ABC三邊AB、AC、BC(或其延長線)的距離分別為h1、h2、h3,△ABC的高為h.在圖①中,點(diǎn)P是邊BC的中點(diǎn),由S△ABP+S△ACP=S△ABC得,
          1
          2
          AB.h1+
          1
          2
          AC.h2=
          1
          2
          BC.h,可得h1+h2=h又因?yàn)閔3=0,所以:h1+h2+h3=h.
          圖②~⑤中,點(diǎn)P分別在線段MC上、MC延長線上、△ABC內(nèi)、△ABC外.
          (1)請?zhí)骄浚簣D②~⑤中,h1、h2、h3、h之間的關(guān)系;(直接寫出結(jié)論)
          (2)說明圖②所得結(jié)論為什么是正確的;
          (3)說明圖⑤所得結(jié)論為什么是正確的.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2007•臨夏州)[(1)-(3),10分]如圖,已知等邊△ABC和點(diǎn)P,設(shè)點(diǎn)P到△ABC三邊AB、AC、BC(或其延長線)的距離分別為h1、h2、h3,△ABC的高為h.
          在圖(1)中,點(diǎn)P是邊BC的中點(diǎn),此時h3=0,可得結(jié)論:h1+h2+h3=h.
          在圖(2)--(5)中,點(diǎn)P分別在線段MC上、MC延長線上、△ABC內(nèi)、△ABC外.
          (1)請?zhí)骄浚簣D(2)--(5)中,h1、h2、h3、h之間的關(guān)系;(直接寫出結(jié)論)
          (2)證明圖(2)所得結(jié)論;
          (3)證明圖(4)所得結(jié)論.
          (4)在圖(6)中,若四邊形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,點(diǎn)P在梯形內(nèi),且點(diǎn)P到四邊BR、RS、SC、CB的距離分別是h1、h2、h3、h4,橋形的高為h,則h1、h2、h3、h4、h之間的關(guān)系為:
          m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
          m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
          ;圖(4)與圖(6)中的等式有何關(guān)系?

          查看答案和解析>>

          同步練習(xí)冊答案