已知二次函數(shù)y=-3x2+6x-5圖象上兩點(diǎn)P1(xl,y1),P2(x2,y2),當(dāng)0≤x1<l,2≤x2<3時(shí),y1與y2的大小關(guān)系為y1 y2.
【答案】分析:先根據(jù)二次函數(shù)的解析式判斷出拋物線的開口方向及頂點(diǎn)坐標(biāo),再根據(jù)拋物線的對(duì)稱性求出P1關(guān)于對(duì)稱軸對(duì)稱的點(diǎn)的橫坐標(biāo),根據(jù)拋物線在對(duì)稱軸右側(cè)的增減性即可解答.
解答:解:由二次函數(shù)y=-3x2+6x-5可知,其圖象開口向下,其頂點(diǎn)坐標(biāo)為(1,-2),
∵0≤x1<lP12≤x2<3,
∴P1(xl,y1),P2(x2,y2)在對(duì)稱軸兩側(cè)側(cè),
∵P1關(guān)于對(duì)稱軸的橫坐標(biāo)為1≤x1+1<2<x2,
∵在對(duì)稱軸的右側(cè)此函數(shù)為減函數(shù),
∴y1≥y2.
故答案為:≥.
點(diǎn)評(píng):本題考查的是二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,能根據(jù)二次函數(shù)的解析式求出其頂點(diǎn)坐標(biāo)及P1關(guān)于對(duì)稱軸對(duì)稱的點(diǎn)的橫坐標(biāo)是解答此題的關(guān)鍵.