日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某數(shù)學(xué)興趣小組同學(xué)進(jìn)行測量大樹CD高度的綜合實踐活動,如圖,在點A處測得直立于地面的大樹頂端C的仰角為45°,然后沿在同一剖面的斜坡AB行走13米至坡頂B,然后再沿水平方向行走4米至大樹腳底點D,斜面AB的坡度(或坡比i=1:2.4,那么大樹CD的高度為_____

          【答案】11

          【解析】

          可以作BFAEF,在RtABF中,運用勾股定理,根據(jù)各邊的數(shù)量關(guān)系求得AF的長度,就可得到AE的長度;

          接下來根據(jù)已知的AE的長度,在RtACE中,運用三角函數(shù)求得CE的長度,進(jìn)而可知CD的長度.

          解:作BFAEF,如圖所示:

          FE=BD=4米,DE=BF.

          ∵斜面AB的坡度i=1:2.4,

          AF=2.4BF.

          設(shè)BF=x米,則AF=2.4x米,

          RtABF中,由勾股定理得:x2+(2.4x)2=132

          解得:x=5,

          DE=BF=5米,AF=12米,

          AE=AF+FE=16.

          RtACE中,CE=AE=16米,

          CD=CE-DE=16-5=11.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連接BD、DP,BD與CF相交于點H,給出下列結(jié)論:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC

          其中正確的是(  。

          A. ①②③④ B. ②③ C. ①②④ D. ①③④

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一名大學(xué)生利用互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品的成本價為24/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于32元件,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售最(件)與(元/件)之間的函數(shù)關(guān)系如圖所示

          1)求之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

          2)求每天的銷售利潤(元)與銷售單價(元/件)之問的函數(shù)關(guān)系式并求出每天銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直角坐標(biāo)系中,正方形OABC的頂點O與原點重合,頂點AC分別在x軸、y軸上,反比例函數(shù)的圖象與正方形的兩邊AB、BC分別交于點M、N,NDx軸,垂足為D,連接OM、ON、MN

          下列結(jié)論:

          ①△OCN≌△OAM;

          ON=MN

          ③四邊形DAMNMON面積相等;

          ④若∠MON=45°MN=2,則點C的坐標(biāo)為

          其中正確的個數(shù)是(

          A.1B.2C.3D.4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某區(qū)教育局為了解今年九年級學(xué)生體育測試情況,隨機抽查了某班學(xué)生的體育測試成績?yōu)闃颖,?/span>A、B、CD四個等級進(jìn)行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:

          說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下

          1)樣本中D級的學(xué)生人數(shù)占全班學(xué)生人數(shù)的百分比是 ;

          2)扇形統(tǒng)計圖中A級所在的扇形的圓心角度數(shù)是

          3)請把條形統(tǒng)計圖補充完整;

          4)若該校九年級有500名學(xué)生,請你用此樣本估計體育測試中A級和B級的學(xué)生人數(shù)之和.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀下列材料,并完成相應(yīng)的任務(wù).

          古希臘的幾何學(xué)家海倫在他的著作《度量論》一書中給出了利用三角形三邊之長求面積的公式﹣﹣﹣﹣海倫公式S(其中ab,c是三角形的三邊長,,S為三角形的面積),并給出了證明

          例如:在△ABC中,a3,b4,c5,那么它的面積可以這樣計算:

          a3,b4,c5

          6

          S6

          事實上,對于已知三角形的三邊長求三角形面積的問題,還可用我國南宋時期數(shù)學(xué)家秦九韶提出的秦九韶公式等方法解決.

          根據(jù)上述材料,解答下列問題:

          如圖,在△ABC中,BC7AC8,AB9

          1)用海倫公式求△ABC的面積;

          2)如圖,AD、BE為△ABC的兩條角平分線,它們的交點為I,求△ABI的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,二次函數(shù)yax23ax+c的圖象與x軸交于點A、B,與y軸交于點c直線y=﹣x+4經(jīng)過點B、C

          1)求拋物線的表達(dá)式;

          2)過點A的直線ykx+k交拋物線于點M,交直線BC于點N,連接AC,當(dāng)直線ykx+k平分ABC的面積,求點M的坐標(biāo);

          3)如圖2,把拋物線位于x軸上方的圖象沿x軸翻折,當(dāng)直線ykx+k與翻折后的整個圖象只有三個交點時,求k的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB為半圓的直徑,點D在半圓弧上,過點DAB的平行線與過點A半圓的切線交于點C,點EAB上,若DE垂直平分BC,則______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,CD是一高為4米的平臺,AB是與CD底部相平的一棵樹,在平臺頂C點測得樹頂A點的仰角α=30°,從平臺底部向樹的方向水平前進(jìn)3米到達(dá)點E,在點E處測得樹頂A點的仰角β=60°,求樹高AB(結(jié)果保留根號)

          查看答案和解析>>

          同步練習(xí)冊答案