日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線C1:y=x2+mx+1的頂點(diǎn)在x軸負(fù)半軸上.
          (1)求拋物線C1的頂點(diǎn)坐標(biāo);
          (2)把拋物線C1向下平移若干個(gè)單位后,得到拋物線C2,已知C2與x軸的交點(diǎn)為A(1,0)、B,求拋物線C2的函數(shù)解析式和B點(diǎn)的坐標(biāo);
          (3)若P(n,y1)、Q(2,y2)是拋物線C1上的兩點(diǎn),且y1>y2.直接寫出實(shí)數(shù)n的取值范圍.

          解:(1)∵y=x2+mx+1的頂點(diǎn)在x軸負(fù)半軸上,
          ∴b2-4ac=m2-4=0,x=-<0,則m>0,
          解得:m1=2,m2=-2(不合題意舍去),
          ∴y=x2+mx+1=x2+2x+1=(x+1)2
          ∴C1的頂點(diǎn)坐標(biāo)為(-1,0);

          (2)設(shè)C2的函數(shù)關(guān)系式為y=(x+1)2+k,
          把A(1,0)代入上式得(1+1)2+k=0,得k=-4,
          ∴C2的函數(shù)關(guān)系式為y=(x+1)2-4.
          ∵拋物線的對(duì)稱軸為直線x=-1,與x軸的一個(gè)交點(diǎn)為A(1,0),
          由對(duì)稱性可知,它與x軸的另一個(gè)交點(diǎn)B的坐標(biāo)為(-3,0);

          (3)當(dāng)x≥-1時(shí),y隨x的增大而增大,
          當(dāng)n≥-1時(shí),
          ∵y1>y2,
          ∴n>2.
          當(dāng)n<-1時(shí),P(n,y1)的對(duì)稱點(diǎn)坐標(biāo)為(-2-n,y1),且-2-n>-1,
          ∵y1>y2,
          ∴-2-n>2,
          ∴n<-4.
          綜上所述:n>2或n<-4.
          分析:(1)由于二次函數(shù)y=x2+mx+1的頂點(diǎn)在x軸負(fù)半軸上,那么頂點(diǎn)的縱坐標(biāo)為0,由此可以確定m.
          (2)首先設(shè)所求拋物線解析式為y=(x+1)2+k,然后把A(1,0)代入即可求出k,也就求出了拋物線的解析式;
          (3)由于圖象C1的對(duì)稱軸為直線x=-1,所以知道當(dāng)x≥-1時(shí),y隨x的增大而增大,然后討論n≥-1和n≤-1兩種情況,利用前面的結(jié)論即可得到實(shí)數(shù)n的取值范圍.
          點(diǎn)評(píng):此題考查了拋物線與x軸交點(diǎn)個(gè)數(shù)與其判別式的關(guān)系以及拋物線平移的性質(zhì)和拋物線的增減性,熟練掌握二次函數(shù)平移的性質(zhì)是解題關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知拋物線C1與坐標(biāo)軸的交點(diǎn)依次是A(-4,0),B(-2,0),E(0,8).
          (1)求拋物線C1關(guān)于原點(diǎn)對(duì)稱的拋物線C2的解析式;
          (2)設(shè)拋物線C1的頂點(diǎn)為M,拋物線C2與x軸分別交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),頂點(diǎn)為N,四邊形MDNA的面積為S.若點(diǎn)A,點(diǎn)D同時(shí)以每秒1個(gè)單位的速度沿水平方向分別向右、向左運(yùn)動(dòng);與此同時(shí),點(diǎn)M,點(diǎn)N同時(shí)以每秒2個(gè)單位的速度沿堅(jiān)直方向分別向下、向上運(yùn)動(dòng),直到點(diǎn)A與點(diǎn)D重合為止.求出四邊形MDNA的面積S與運(yùn)動(dòng)時(shí)間t之間的關(guān)系式,并寫出自變量t的取值范圍;
          (3)當(dāng)t為何值時(shí),四邊形MDNA的面積S有最大值,并求出此最大值;
          (4)在運(yùn)動(dòng)過程中,四邊形MDNA能否形成矩形?若能,求出此時(shí)t的值;若不能,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知拋物線C1:y=-x2+2mx+1(m為常數(shù),且m≠0)的頂點(diǎn)為A,與y軸交于點(diǎn)C;拋物線C2與拋物線C1關(guān)于y軸對(duì)稱,其頂點(diǎn)為B.若點(diǎn)P是拋物線C1上的點(diǎn),使得以A、B、C、P為頂點(diǎn)的四邊形為菱形,則m為( 。
          A、±
          3
          B、
          3
          C、±
          2
          D、
          2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知拋物線C1:y=a(x-2)2-5的頂點(diǎn)為P,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)A的橫坐標(biāo)是-1.
          (1)求P點(diǎn)坐標(biāo)及a的值;
          (2)如圖(1),拋物線C2與拋物線C1關(guān)于x軸對(duì)稱,將拋物線C2向左平移,平移后的拋物線記為C3,C3的頂點(diǎn)為M,當(dāng)點(diǎn)P、M關(guān)于點(diǎn)A成中心對(duì)稱時(shí),求C3的解析式y(tǒng)=a(x-h)2+k;
          (3)如圖(2),點(diǎn)Q是x軸負(fù)半軸上一動(dòng)點(diǎn),將拋物線C1繞點(diǎn)Q旋轉(zhuǎn)180°后得到拋物線C4.拋物線C4的頂點(diǎn)為N,與x軸相交于E、F兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),當(dāng)以點(diǎn)P、N、E為頂點(diǎn)的三角形是直角三角形時(shí),求頂點(diǎn)N的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2010•房山區(qū)一模)已知拋物線C1:y=ax2+4ax+4a-5的頂點(diǎn)為P,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)B的橫坐標(biāo)是1.
          (1)求拋物線的解析式和頂點(diǎn)P的坐標(biāo);
          (2)將拋物線沿x軸翻折,再向右平移,平移后的拋物線C2的頂點(diǎn)為M,當(dāng)點(diǎn)P、M關(guān)于點(diǎn)B成中心對(duì)稱時(shí),求平移后的拋物線C2的解析式;
          (3)直線y=-
          35
          x+m
          與拋物線C1、C2的對(duì)稱軸分別交于點(diǎn)E、F,設(shè)由點(diǎn)E、P、F、M構(gòu)成的四邊形的面積為s,試用含m的代數(shù)式表示s.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知拋物線C1:y=-x2+2mx+1(m為常數(shù),且m≠0)的頂點(diǎn)為A,與y軸交于點(diǎn)C;拋物線C2與拋物線C1關(guān)于y軸對(duì)稱,其頂點(diǎn)為B.若點(diǎn)P是拋物線C1上的點(diǎn),使得以A、B、C、P為頂點(diǎn)的四邊形為菱形,則m的值為
          ±
          3
          ±
          3

          查看答案和解析>>

          同步練習(xí)冊(cè)答案