日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知拋物線y=-x2+bx+c與x軸的相交于點A和點B(3,0),與y軸交于點C,且S△BOC=
          92
          精英家教網(wǎng)
          (1)求拋物線和直線BC的函數(shù)解析式;
          (2)設(shè)P直線BC上的動點、Q是拋物線上的動點.問:是否存在以C、P、Q為頂點的三角形,使得它與△BOC相似?若存在,請直接寫出線段PQ的長;若不存在,請說明理由;
          (3)在上述條件下,把直線BC繞C旋轉(zhuǎn).當(dāng)直線與拋物線只有一個公共點時,求OP的最小值.
          分析:(1)已知了B點坐標(biāo),即可求出OB的長,根據(jù)△BOC的面積可求得OC的長,即可得到點C的坐標(biāo),進而可利用待定系數(shù)法求得直線BC和拋物線的解析式.
          (2)由(1)知:OB=OC=3,即∠OCB=45°,若△CPQ與△BOC相似,那么△CPQ也必為等腰直角三角形,因此需要考慮兩種情況:
          ①以C為直角頂點,過C作直線BC的垂線,此垂線與拋物線的交點即為Q點,易得直線BC的解析式,根據(jù)CQ⊥BC,可求得直線CQ的斜率,結(jié)合C點坐標(biāo)即可得到直線CQ的解析式,聯(lián)立拋物線的解析式即可求得Q點的坐標(biāo),進而可求得CQ的長,那么PQ=
          2
          CQ,由此得解;
          ②以Q或P為直角頂點,過C作x軸的平行線,那么此直線與拋物線的交點必為Q點,易得CQ的長,當(dāng)Q為直角頂點時,CQ=PQ,當(dāng)P為直角頂點時,CQ=
          2
          PQ,由此得解.
          (3)若旋轉(zhuǎn)后的直線與拋物線只有一個交點,有兩種情況需要考慮:
          ①旋轉(zhuǎn)后直線B′C正好和y軸重合,此時兩個函數(shù)只有一個交點C,由(2)求得PQ=CP=
          2
          或2,那么OP的最小值應(yīng)為3-2=1;
          ②當(dāng)直線B′C不與y軸重合,設(shè)出該直線的解析式,聯(lián)立拋物線的解析式,若兩個函數(shù)只有一個交點,所得方程的判別式等于0,由此可確定此直線(設(shè)為B′C′)的解析式,進而求得該直線與x軸交點B′的坐標(biāo),過O作B′C的垂線,在Rt△B′OC中,利用勾股定理易得B′C的長,進而可根據(jù)直角三角形面積的不同表示方法求得OP的長;
          比較上述兩種情況所得OP的長,即可得到OP的最小值.
          解答:精英家教網(wǎng)解:(1)∵拋物線y=-x2+bx+c與x軸的相交于點A和點B(3,0),與y軸交于點C;
          ∴OB=3,OC=c,-32+3b+c=0,
          ∵S△BOC=
          1
          2
          OB•OC=
          9
          2
          ,
          ∴c=3,b=2;
          ∴拋物線的函數(shù)解析式為:y=-x2+2x+3;(2分)
          設(shè)直線BC的函數(shù)解析式為y=kx+m,
          0=3k+m
          3=m

          k=-1
          m=3

          ∴直線BC的函數(shù)解析式為y=-x+3.(4分)

          (2)由于OB=OC=3,則△OBC是等腰直角三角形,
          若C、P、Q為頂點的三角形與△BOC相似,則△CPQ也必為等腰直角三角形,
          ①過C作直線CQ⊥BC,交拋物線于Q;
          易知C(0,3),且直線BC:y=-x+3;
          故直線CQ:y=x+3,聯(lián)立拋物線的解析式有:
          y=x+3
          y=-x2+2x+3
          ,
          解得
          x=0
          y=3
          ,
          x=1
          y=4

          故Q(1,4),CQ=
          2
          ;
          則PQ=
          2
          CQ=2;精英家教網(wǎng)
          ②過C作直線CQ∥x軸,交拋物線于Q;
          則Q(2,3),CQ=2;
          當(dāng)Q為直角頂點時,PQ=CQ=2;
          當(dāng)P為直角頂點時,PQ=
          2
          2
          CQ=
          2
          ;
          綜上可知:存在以C、P、Q為頂點的三角形,使得它與△BOC相似;PQ的長為:PQ=
          2
          或2.(6分)

          (3)OP=1.
          在上述條件下,把直線BC繞C旋轉(zhuǎn);當(dāng)直線與拋物線只有一個公共點時,則公共點為C(0,3)(有兩種情況)
          ①直線BC與y軸重合時,顯然,OP=1;(7分)
          ②直線BC與y軸重合時,設(shè)直線BC繞C旋轉(zhuǎn)后的直線B′C函數(shù)解析式為:(B′為直線B′C與x軸的交點)y=kx+3,
          把y=kx+3代入y=-x2+2x+3中得:
          kx+3=-x2+2x+3,
          整理得x2+(k-2)x=0,
          ∴△=(k-2)2=0,
          ∴k=2,
          ∴設(shè)直線B′C的函數(shù)解析式為:y=2x+3;(8分)精英家教網(wǎng)
          令y=0,則2x+3=0,得x=-
          3
          2
          ,
          ∴B′(-
          3
          2
          ,0),
          ∴OB′=
          3
          2
          ;
          作OP⊥CB′于點P,此時OP的值最。唬10分)
          此時,CB′•OP=OB′•OC,
          ∵OB′=
          3
          2
          ,OC=3,
          CB′=
          (
          3
          2
          )
          2
          +32
          =
          3
          2
          5
          ,
          ∴OP=
          3
          5
          5
          ;(11分)
          綜上得,OP=1.(12分)
          點評:此題考查了圖形面積的求法、二次函數(shù)解析式的確定、等腰直角三角形的判定和性質(zhì)、函數(shù)圖象交點坐標(biāo)的求法等知識,(2)(3)題中,都用到了分類討論的數(shù)學(xué)思想,一定要將問題考慮全面,以免漏解.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點,與y軸交于點精英家教網(wǎng)C(0,3).
          (1)求拋物線的解析式;
          (2)求直線BC的函數(shù)解析式;
          (3)在拋物線上,是否存在一點P,使△PAB的面積等于△ABC的面積,若存在,求出點P的坐標(biāo),若不存在,請說明理由.
          (4)點Q是直線BC上的一個動點,若△QOB為等腰三角形,請寫出此時點Q的坐標(biāo).(可直接寫出結(jié)果)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點,與x軸交于另一點B.
          (1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
          (2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點,對稱軸是x=-1.
          (1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
          (2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設(shè)運動的時間為t秒.
          ①當(dāng)t為何值時,四邊形OMPQ為矩形;
          ②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
          (1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
          (2)點P是拋物線對稱軸上一點,若△PAB∽△OBC,求點P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知拋物線y=ax2+bx+c的頂點是(-1,-4),且與x軸交于A、B(1,0)兩點,交y軸于點C;
          (1)求此拋物線的解析式;
          (2)①當(dāng)x的取值范圍滿足條件
          -2<x<0
          -2<x<0
          時,y<-3;
               ②若D(m,y1),E(2,y2)是拋物線上兩點,且y1>y2,求實數(shù)m的取值范圍;
          (3)直線x=t平行于y軸,分別交線段AC于點M、交拋物線于點N,求線段MN的長度的最大值;
          (4)若以拋物線上的點P為圓心作圓與x軸相切時,正好也與y軸相切,求點P的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊答案