日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知等邊△ABC,AB=4,以AB為直徑的半圓與BC邊交于點D,過點DDEAC,垂足為E,過點EEFAB,垂足為F,連接FD.

          (1)求證:DE是⊙O的切線;

          (2)EF的長.

          【答案】(1)見解析;(2) .

          【解析】

          (1)連接OD,根據(jù)切線的判定方法即可求出答案;

          (2)由于ODAC,點OAB的中點,從而可知ODABC的中位線,在RtCDE中,∠C=60°,CE=CD=1,所以AE=ACCE=41=3,在RtAEF中,所以EF=AEsinA=3×sin60°=.

          (1)連接OD,

          ∵△ABC是等邊三角形,

          ∴∠C=A=B=60°,

          OD=OB,

          ∴△ODB是等邊三角形,

          ∴∠ODB=60°

          ∴∠ODB=C,

          ODAC,

          DEAC

          ODDE,

          DE是⊙O的切線

          (2)ODAC,點OAB的中點,

          ODABC的中位線,

          BD=CD=2

          RtCDE中,

          C=60°,

          ∴∠CDE=30°,

          CE=CD=1

          AE=AC﹣CE=4﹣1=3

          RtAEF中,

          A=60°,

          EF=AEsinA=3×sin60°=

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】已知等邊AOB的邊長為4,以O為坐標原點,OB所在直線為x軸建立如圖所示的平面直角坐標系.

          1)求點A的坐標;

          2)若直線ykxk0)與線段AB有交點,求k的取值范圍;

          3)若點Cx軸正半軸上,以線段AC為邊在第一象限內(nèi)作等邊ACD,求直線BD的解析式.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知等腰三角形ABC中,ABAC,∠ABC40°,P為直線BC上一點,PBAB,則∠PAC_____°

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖所示,A′B′C′ABC經(jīng)過平移得到的,ABC中任意一點P(x1,y1)平移后的對應點為P′(x1+6,y1+4)。

          (1)請寫出三角形ABC平移的過程;

          (2)分別寫出點A′,B′,C′ 的坐標。

          (3)求A′B′C′的面積。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在大課間活動中,同學們積極參加體育鍛煉,小明就本班同學我最喜愛的體育項目進行了一次調(diào)查統(tǒng)計,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,解答以下問題:

          (1)該班共有_____名學生;

          (2)補全條形統(tǒng)計圖;

          (3)在扇形統(tǒng)計圖中,乒乓球部分所對應的圓心角度數(shù)為_____;

          (4)學校將舉辦體育節(jié),該班將推選5位同學參加乒乓球活動,有3位男同學(A,B,C)和2位女同學(D,E),現(xiàn)準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在△ABC中,點DAB上,CDCB,點EBD的中點,且EAEC,點FAC的中點,連接EFCD于點M,連接AM

          1)求證:EFAC

          2)求線段AM、DMBC之間的數(shù)量關(guān)系.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,矩形ABCD中,AB=4,AD=5,E為BC上一點,BE∶CE=3∶2,連接AE,點P從點A出發(fā),沿射線AB的方向以每秒1個單位長度的速度勻速運動,過點P作PF∥BC交直線AE于點F.

          (1)線段AE=______;

          (2)設點P的運動時間為t(s),EF的長度為y,求y關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;

          (3)當t為何值時,以F為圓心的⊙F恰好與直線AB、BC都相切?并求此時⊙F的半徑.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,ABC 在平面直角坐標系中,點 A,BC 的坐標分別為 A-2,4),B4,2),C2,-1.

          )請在平面直角坐標系內(nèi),畫出ABC 關(guān)于 x 軸的對稱圖形A1B1C1,其中,點 A,BC 的對應點分別為A1,B1,C1;

          )請寫出點C2,-1)關(guān)于直線m(直線m上格點的橫坐標都為-1)對稱的點C2的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】閱讀下面的材料并解答后面的問題:

          (閱讀)

          小亮:你能求出x2+4x3的最小值嗎?如果能,其最小值是多少?

          小華:能.求解過程如下:

          因為x2+4x3x2+4x+443=(x2+4x+4)﹣(4+3)=(x+227

          而(x+22≥0,所以x2+4x3的最小值是﹣7

          1)小華的求解過程正確嗎?

          2)你能否求出x25x+4的最小值?如果能,寫出你的求解過程.

          查看答案和解析>>

          同步練習冊答案