日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2008•南平)(1)如圖1,圖2,圖3,在△ABC中,分別以AB,AC為邊,向△ABC外作正三角形,正四邊形,正五邊形,BE,CD相交于點(diǎn)O.
          ①如圖1,求證:△ABE≌△ADC;
          ②探究:如圖1,∠BOC=______;
          如圖2,∠BOC=______;
          如圖3,∠BOC=______;
          (2)如圖4,已知:AB,AD是以AB為邊向△ABC外所作正n邊形的一組鄰邊;AC,AE是以AC為邊向△ABC外所作正n邊形的一組鄰邊,BE,CD的延長(zhǎng)相交于點(diǎn)O.
          ①猜想:如圖4,∠BOC=360÷n(用含n的式子表示);
          ②根據(jù)圖4證明你的猜想.

          【答案】分析:(1)要證明△ABE≌△ADC,題中△ABD與△ACE均為等邊三角形,容易得出AD=AB,AC=AE,對(duì)應(yīng)全等條件找邊,或夾角,可由∠DAB=∠EAC=60°轉(zhuǎn)換得出∠DAC=∠BAE來(lái)證明;
          (2)欲求∠BOC的度數(shù),可以通過(guò)證明△ABE≌△ADC及正n邊形的內(nèi)角和定理,得出∠BOC+∠DAB=180°,得出∠BOC=360÷n度的結(jié)論.
          解答:解:(1)①證法一
          ∵△ABD與△ACE均為等邊三角形,
          ∴AD=AB,AC=AE,
          且∠BAD=∠CAE=60°,
          ∴∠BAD+∠BAC=∠CAE+∠BAC,
          即∠DAC=∠BAE,
          ∴△ABE≌△ADC.

          證法二:
          ∵△ABD與△ACE均為等邊三角形,
          ∴AD=AB,AC=AE,
          且∠BAD=∠CAE=60°,
          ∴△ADC可由△ABE繞著點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)60°得到,
          ∴△ABE≌△ADC,
          ②120°,90°,72°.

          (2)①
          ②證法一:依題意,知∠BAD和∠CAE都是正n邊形的內(nèi)角,
          AB=AD,AE=AC,
          ∴∠BAD=∠CAE=
          ∴∠BAD-∠DAE=∠CAE-∠DAE,
          即∠BAE=∠DAC,
          ∴△ABE≌△ADC,
          ∴∠ABE=∠ADC,
          ∵∠ADC+∠ODA=180°,
          ∴∠ABO+∠ODA=180°,
          ∵∠ABO+∠ODA+∠DAB+∠BOC=360°,
          ∴∠BOC+∠DAB=180°,
          ∴∠BOC=180°-∠DAB=;

          證法二:同上可證△ABE≌△ADC.
          ∴∠ABE=∠ADC,如圖,延長(zhǎng)BA交CO于F,
          ∵∠AFD+∠ABE+∠BOC=180°,∠AFD+∠ADC+∠DAF=180°,
          ∴∠BOC=∠DAF=180°-∠BAD=;

          證法三:同上可證△ABE≌△ADC.
          ∴∠ABE=∠ADC.
          ∵∠BOC=180°-(∠ABE+∠ABC+∠ACB+∠ACD),
          ∴∠BOC=180°-(∠ADC+∠ABC+∠ACB+∠ACD),
          ∵∠ABC+∠ACB=180°-∠BAC,∠ADC+∠ACD=180°-∠DAC,
          ∴∠BOC=180°-(360°-∠BAC-∠DAC),
          即∴∠BOC=180°-∠BAD=;

          證法四:同上可證△ABE≌△ADC.
          ∴∠AEB=∠ACD.如圖,連接CE,
          ∵∠BEC=∠BOC+∠OCE,
          ∴∠AEB+∠AEC=∠BOC+∠ACD-∠ACE,
          ∴∠BOC=∠AEC+∠ACE.
          即∴∠BOC=180°-∠CAE=
          注意:此題還有其它證法,可相應(yīng)評(píng)分.
          點(diǎn)評(píng):本題圖形復(fù)雜,考查了正多邊形的內(nèi)角相等,內(nèi)角和定理:(n-2)•180°,及全等三角形的判斷和性質(zhì).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2008•南平質(zhì)檢)樣本數(shù)據(jù)28,50,36,88,45的中位數(shù)是
          45
          45

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2008•南平質(zhì)檢)如圖,AB∥CD,點(diǎn)E在CB的延長(zhǎng)線上,若∠ABE=60°,則∠ECD的度數(shù)為
          120°
          120°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2008•南平質(zhì)檢)如圖,A是半徑為6cm的⊙O上的定點(diǎn),動(dòng)點(diǎn)P從A出發(fā),以πcm/s的速度沿圓周按順時(shí)針?lè)较蜻\(yùn)動(dòng),當(dāng)點(diǎn)P回到A時(shí)立即停止運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t(s)
          (1)當(dāng)t=6s時(shí),∠POA的度數(shù)是
          180
          180

          (2)當(dāng)t為多少時(shí),∠POA=120°;
          (3)如果點(diǎn)B是OA延長(zhǎng)線上的一點(diǎn),且AB=AO,問(wèn)t為多少時(shí),△POB為直角三角形?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2009年浙江省紹興市紹興縣蘭亭鎮(zhèn)中數(shù)學(xué)中考模擬試卷(解析版) 題型:解答題

          (2008•南平)如圖,平面直角坐標(biāo)系中有一矩形紙片OABC,O為原點(diǎn),點(diǎn)A,C分別在x軸,y軸上,點(diǎn)B坐標(biāo)為(m,)(其中m>0),在BC邊上選取適當(dāng)?shù)狞c(diǎn)E和點(diǎn)F,將△OCE沿OE翻折,得到△OGE;再將△ABF沿AF翻折,恰好使點(diǎn)B與點(diǎn)G重合,得到△AGF,且∠OGA=90度.
          (1)求m的值;
          (2)求過(guò)點(diǎn)O,G,A的拋物線的解析式和對(duì)稱軸;
          (3)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得△OPG是等腰三角形?若不存在,請(qǐng)說(shuō)明理由;若存在,直接答出所有滿足條件的點(diǎn)P的坐標(biāo)(不要求寫出求解過(guò)程).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2009年廣東省茂名十中初中數(shù)學(xué)綜合練習(xí)試卷(6)(解析版) 題型:解答題

          (2008•南平)如圖,平面直角坐標(biāo)系中有一矩形紙片OABC,O為原點(diǎn),點(diǎn)A,C分別在x軸,y軸上,點(diǎn)B坐標(biāo)為(m,)(其中m>0),在BC邊上選取適當(dāng)?shù)狞c(diǎn)E和點(diǎn)F,將△OCE沿OE翻折,得到△OGE;再將△ABF沿AF翻折,恰好使點(diǎn)B與點(diǎn)G重合,得到△AGF,且∠OGA=90度.
          (1)求m的值;
          (2)求過(guò)點(diǎn)O,G,A的拋物線的解析式和對(duì)稱軸;
          (3)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得△OPG是等腰三角形?若不存在,請(qǐng)說(shuō)明理由;若存在,直接答出所有滿足條件的點(diǎn)P的坐標(biāo)(不要求寫出求解過(guò)程).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案