日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. a
          b
          =
          2
          7
          ,求
          a2-3ab+2b2
          2a2+ab-3b2
          的值.
          分析:先設(shè)a=2k,則b=7k,再把原式的分子和分母因式分解,約分后把a=2k,則b=7k代入計算即可.
          解答:解:設(shè)a=2k,則b=7k,
          原式=
          (a-2b)(a-b)
          (2a+3b)(a-b)

          =
          a-2b
          2a+3b

          =
          2k-14k
          4k+21k

          =-
          12
          25
          點評:本題考查了分式的化簡求值:先把分式的分子或分母因式分解(有括號,先算括號),然后約分得到最簡分式或整式,然后把滿足條件的字母的值代入計算得到對應(yīng)的分式的值.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          在銳角△ABC中,∠A,∠B,∠C的對邊分別是a,b,c.如圖所示,過C作CD⊥AB于D,則co精英家教網(wǎng)sA=
          AD
          b

          即AD=bcosA.
          ∴BD=c-AD=c-bcosA
          在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2
          ∴b2-b2cos2A=a2-(c-bcosA)2
          整理得:a2=b2+c2-2bccosA        (1)
          同理可得:b2=a2+c2-2accosB      (2)
          c2=a2+b2-2abcosC               (3)
          這個結(jié)論就是著名的余弦定理,在以上三個等式中有六個元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個元素,可求出其余的另外三個元素.
          如:在銳角△ABC中,已知∠A=60°,b=3,c=6,
          則由(1)式可得:a2=32+62-2×3×6cos60°=27
          ∴a=3
          3
          ,∠B,∠C則可由式子(2)、(3)分別求出,在此略.
          根據(jù)以上閱讀理解,請你試著解決如下問題:
          已知銳角△ABC的三邊a,b,c分別是7,8,9,求∠A,∠B,∠C的度數(shù).(保留整數(shù))

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          閱讀以下文字并解決問題:

               對于形如x2+2ax+a2這樣的二次三項式,我們可以直接用公式法把它分解成(x+a)2 的形式,但對于二次三項式x2+6x-27,就不能直接用公式法分解了。此時,我們可以在x2+6x-27中間先加上一項9,使它與x2+6x的和構(gòu)成一個完全平方式,然后再減去9,則整個多項式的值不變。 即:x2+6x-27=(x2+6x+9)-9-27=(x+3)2-62=(x+3+6)(x+3-6)=(x+9)(x-3),

          像這樣,把一個二次三項式變成含有完全平方式的形式的方法,叫做配方法。

          (1)利用“配方法”因式分解:x2+4xy-5y2

          (2) 若a+b=6, ab=5,求:①a2+b2, ②a4+b4的值

          (3)如果a2+2b2+c2-2ab-6b-4c+13=0,求a+b+c的值

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:第1章《直角三角形的邊角關(guān)系》中考題集(23):1.4 船有觸角的危險嗎(解析版) 題型:解答題

          在銳角△ABC中,∠A,∠B,∠C的對邊分別是a,b,c.如圖所示,過C作CD⊥AB于D,則cosA=,
          即AD=bcosA.
          ∴BD=c-AD=c-bcosA
          在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2
          ∴b2-b2cos2A=a2-(c-bcosA)2
          整理得:a2=b2+c2-2bccosA
          同理可得:b2=a2+c2-2accosB
          c2=a2+b2-2abcosC
          這個結(jié)論就是著名的余弦定理,在以上三個等式中有六個元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個元素,可求出其余的另外三個元素.
          如:在銳角△ABC中,已知∠A=60°,b=3,c=6,
          則由(1)式可得:a2=32+62-2×3×6cos60°=27
          ∴a=3,∠B,∠C則可由式子(2)、(3)分別求出,在此略.
          根據(jù)以上閱讀理解,請你試著解決如下問題:
          已知銳角△ABC的三邊a,b,c分別是7,8,9,求∠A,∠B,∠C的度數(shù).(保留整數(shù))

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:第31章《銳角三角函數(shù)》中考題集(28):31.3 銳角三角函數(shù)的應(yīng)用(解析版) 題型:解答題

          在銳角△ABC中,∠A,∠B,∠C的對邊分別是a,b,c.如圖所示,過C作CD⊥AB于D,則cosA=
          即AD=bcosA.
          ∴BD=c-AD=c-bcosA
          在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2
          ∴b2-b2cos2A=a2-(c-bcosA)2
          整理得:a2=b2+c2-2bccosA
          同理可得:b2=a2+c2-2accosB
          c2=a2+b2-2abcosC
          這個結(jié)論就是著名的余弦定理,在以上三個等式中有六個元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個元素,可求出其余的另外三個元素.
          如:在銳角△ABC中,已知∠A=60°,b=3,c=6,
          則由(1)式可得:a2=32+62-2×3×6cos60°=27
          ∴a=3,∠B,∠C則可由式子(2)、(3)分別求出,在此略.
          根據(jù)以上閱讀理解,請你試著解決如下問題:
          已知銳角△ABC的三邊a,b,c分別是7,8,9,求∠A,∠B,∠C的度數(shù).(保留整數(shù))

          查看答案和解析>>

          同步練習(xí)冊答案