日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2004•青島)如圖,E,F(xiàn),G,H分別是四邊形ABCD四條邊的中點,要使四邊形EFGH為矩形,則四邊形ABCD應(yīng)具備的條件是( )

          A.一組對邊平行而另一組對邊不平行
          B.對角線相等
          C.對角線互相垂直
          D.對角線互相平分
          【答案】分析:根據(jù)三角形的中位線定理得到四邊形EFGH一定是平行四邊形,再推出一個角是直角,由矩形的判定定理可求解.
          解答:解:要是四邊形EHGF是矩形,應(yīng)添加條件是對角線互相垂直,
          理由是:連接AC、BD,兩線交于O,
          根據(jù)三角形的中位線定理得:EF∥AC,EF=AC,GH∥AC,GH=AC,
          ∴EF∥GH,EF=GH,
          ∴四邊形EFGH一定是平行四邊形,
          ∴EF∥AC,EH∥BD,
          ∵BD⊥AC,
          ∴EH⊥EF,
          ∴∠HEF=90°,
          故選C.
          點評:能夠根據(jù)三角形的中位線定理證明:順次連接四邊形各邊中點所得四邊形是平行四邊形;順次連接對角線互相垂直的四邊形各邊中點所得四邊形是矩形;順次連接對角線相等的四邊形各邊中點所得四邊形是菱形.掌握這些結(jié)論,以便于運用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2004年山東省青島市中考數(shù)學(xué)試卷(2)(解析版) 題型:解答題

          (2004•青島)如圖,在△ABC中,AB=AC=a,M為底邊BC上的任意一點,過點M分別作AB、AC的平行線交AC于P,交AB于Q.
          (1)求四邊形AQMP的周長;
          (2)寫出圖中的兩對相似三角形(不需證明);
          (3)M位于BC的什么位置時,四邊形AQMP為菱形并證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2004年山東省青島市中考數(shù)學(xué)試卷(2)(解析版) 題型:解答題

          (2004•青島)如圖,AB、CD是兩條相互垂直的公路,設(shè)計時想在拐彎處用一段圓弧形灣道把它們連接起來(圓弧在A、C兩點處分別與道路相切),測得AC=60米,∠ACP=45度.
          (1)在圖中畫出圓弧形彎道的示意圖;
          (2)求彎道部分的長.(結(jié)果保留四個有效數(shù)字).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2004年山東省青島市中考數(shù)學(xué)試卷(1)(解析版) 題型:解答題

          (2004•青島)如圖,在△ABC中,AB=AC=a,M為底邊BC上的任意一點,過點M分別作AB、AC的平行線交AC于P,交AB于Q.
          (1)求四邊形AQMP的周長;
          (2)寫出圖中的兩對相似三角形(不需證明);
          (3)M位于BC的什么位置時,四邊形AQMP為菱形并證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2004年山東省青島市中考數(shù)學(xué)試卷(1)(解析版) 題型:選擇題

          (2004•青島)如圖,E,F(xiàn),G,H分別是四邊形ABCD四條邊的中點,要使四邊形EFGH為矩形,則四邊形ABCD應(yīng)具備的條件是( )

          A.一組對邊平行而另一組對邊不平行
          B.對角線相等
          C.對角線互相垂直
          D.對角線互相平分

          查看答案和解析>>

          同步練習(xí)冊答案