日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情

          【題目】如圖,在扇形AOB中,∠AOB=90°,正方形CDEF的頂點C的中點,點DOB上,點EOB的延長線上,當正方形CDEF的邊長為2時,陰影部分的面積為________

          【答案】2π-4

          【解析】

          連結OC,根據在同圓中,等弧所對的圓心角相等可得∠COD=45°,從而證出△ODC為等腰直角三角形,OD=CD=2,即可求出OC的長,然后根據陰影部分的面積=扇形BOC的面積-ODC的面積,即可求出陰影部分的面積.

          解:連結OC,

          ∵在扇形AOB,AOB=90°,正方形CDEF的頂點C 的中點,

          ∴∠COD=45°,

          ∴△ODC為等腰直角三角形,OD=CD=2

          OC= =4,

          ∵陰影部分的面積=扇形BOC的面積-ODC的面積,

          S陰影= ×π×42- ×(2 )2=2π-4

          故答案為:2π-4

          練習冊系列答案
          相關習題

          科目:初中數學 來源: 題型:

          【題目】如圖,在正方形中,對角線相交于點,以為邊向外作等邊,連接若點的延長線上一點,連接,連接平分,下列選項正確的有(  )

          ;②;③;④

          A.B.C.D.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖所示,菱形ABCD的頂點A、B軸上,點A在點B的左側,點D軸的正半軸上,,點A的坐標為.

          (1)D點的坐標.

          (2)求直線AC的函數關系式.

          (3)動點P從點A出發(fā),以每秒1個單位長度的速度,按照的順序在菱形的邊上勻速運動一周,設運動時間為.為何值時,以點P為圓心、以1為半徑的圓與對角線AC相切?

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖1,拋物線與直線為常數,)交于A,B兩點,直線軸于點C,點A的坐標為;

          1)若,則A點的坐標為__________,點B的坐標為____________

          2)已知點,拋物線與線段有兩個公共點,求的取值范圍;

          3)①如圖1,求證:

          ②如圖2,設拋物線的頂點為F,直線交拋物線的對稱軸于點,直線為常數,)經過點A,并交拋物線的對稱軸于點E,若為常數)則的值是否發(fā)生變化?若不變,請求出的值;若變化,請說明理由.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖,在△ABC中,ABAC,AOBC于點O,OEAB于點E,以點O為圓心,OE為半徑作半圓,交AO于點F

          (1)求證:ACO的切線;

          (2)若點FOA的中點,OE=3,求圖中陰影部分的面積;

          (3)在(2)的條件下,點PBC邊上的動點,當PE+PF取最小值時,直接寫出BP的長.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度(米)與登山時間(分)之間的函數圖象如圖所示,根據圖象所提供的信息解答下列問題:

          1)甲登山上升的速度是每分鐘 米,乙在地時距地面的高度 米;

          2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度(米)與登山時間(分)之間的函數關系式.

          (3)登山多長時間時,甲、乙兩人距地面的高度差為50米?

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖,AB是⊙O的直徑,C是⊙O上一點,D的中點,EOD延長線上一點,且∠CAE2C,ACBD交于點H,與OE交于點F

          1)求證:AE是⊙O的切線;

          2)若DH9tanC,求直徑AB的長.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖,已知ABCADE都是等腰直角三角形,∠ACB=ADE=90°,點FBE的中點,連接CF,DF.

          (1)如圖1,當點DAB上,點EAC上時

          ①證明:BFC是等腰三角形;

          ②請判斷線段CF,DF的關系?并說明理由;

          (2)如圖2,將圖1中的ADE繞點A旋轉到圖2位置時,請判斷(1)中②的結論是否仍然成立?并證明你的判斷.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖,AB為O直徑,CD為O上不同于A、B的兩點,ABD=2BAC,連接CD.過點C作CEDB,垂足為E,直線AB與CE相交于F點.

          (1)求證:CFO的切線;

          (2)當BF=5,,求BD的長.

          查看答案和解析>>

          同步練習冊答案