日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在RtABC中,ACB=90°,點(diǎn)D為斜邊AB的中點(diǎn),BC=6,CD=5,過點(diǎn)A作AEAD且AE=AD,過點(diǎn)E作EF垂直于AC邊所在的直線,垂足為點(diǎn)F,連接DF,請你畫出圖形,并直接寫出線段DF的長.

          【答案】

          【解析】

          試題分析:分兩種情況:①點(diǎn)E在CF上方,根據(jù)直角三角形的性質(zhì)得出AC=8,作DGAC可得AG=4、DG=3,再證EAF≌△ADG可得AF=DG=3,即GF=7,由勾股定理即可得答案;②點(diǎn)E在AC下方時(shí),與①同理可得.

          試題解析:①如圖1,當(dāng)點(diǎn)E在CF上方時(shí),點(diǎn)D為斜邊AB的中點(diǎn),BC=6,CD=5,CD=AD=DB=AB=5,AB=10,AC=8,過點(diǎn)D作DGAC于G,AG=CG=AC=4,DG=BC=3,EFA=AGD=90°,∴∠EAF+AEF=90°,又AEAD,∴∠EAF+DAG=90°,∴∠AEF=DAG,在EAF和ADG中,∵∠EFA=AGD,AEF=DAG,AE=AD∴△EAF≌△ADG(AAS),AF=DG=3,在RtDFG中,DF===;

          ②如圖2,當(dāng)點(diǎn)E在AC下方時(shí),作DHAC于H,與①同理可得DAH≌△AEF,AF=DH=3,FH=AH﹣AF=1,則DF===,綜上,DF的長為

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,四邊形EFGH是由矩形ABCD的外角平分線圍成的. 求證:四邊形EFGH是正方形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為了解某市初三學(xué)生的體育測試成績和課外體育鍛煉時(shí)間的情況,現(xiàn)從全市初三學(xué)生體育測試成績中隨機(jī)抽取120名學(xué)生的體育測試成績作為樣本.體育成績分為四個(gè)等次:優(yōu)秀、良好、及格、不及格.

          1試求樣本扇形圖中體育成績良好所對扇形圓心角的度數(shù);

          2統(tǒng)計(jì)樣本中體育成績優(yōu)秀良好學(xué)生課外體育鍛煉時(shí)間表如圖表所示,請將圖表填寫完整記學(xué)生課外體育鍛煉時(shí)間為小時(shí)

          3全市初三學(xué)生中有14400人的體育測試成績?yōu)?/span>優(yōu)秀良好,請估計(jì)這些學(xué)生中課外體育鍛煉時(shí)間不少于4小時(shí)的學(xué)生人數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知拋物線y=x2x+2x軸交于AB兩點(diǎn),與y軸交于點(diǎn)C

          1)求點(diǎn)AB,C的坐標(biāo);

          2)點(diǎn)E是此拋物線上的點(diǎn),點(diǎn)F是其對稱軸上的點(diǎn),求以A,BE,F為頂點(diǎn)的平行四邊形的面積;

          3)此拋物線的對稱軸上是否存在點(diǎn)M,使得△ACM是等腰三角形?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對角線AC為⊙O的直徑,過點(diǎn)C作AC的垂線交AD的延長線于點(diǎn)E,點(diǎn)F為CE的中點(diǎn),連接DB, DF.

          (1)求證:DF是⊙O的切線;

          (2)若DB平分∠ADC,AB=a, ∶DE=4∶1,寫出求DE長的思路.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°.求:∠DCE和∠DCA的度數(shù).
          請將以下解答補(bǔ)充完整,
          解:因?yàn)椤螪AB+∠D=180°
          所以DC∥AB(
          所以∠DCE=∠B(
          又因?yàn)椤螧=95°,
          所以∠DCE=°;
          因?yàn)锳C平分∠DAB,∠CAD=25°,根據(jù)角平分線定義,
          所以∠CAB==°,
          因?yàn)镈C∥AB
          所以∠DCA=∠CAB,(
          所以∠DCA=°.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知10x=5,10y=2,則103x+2y1的值為( 。

          A. 18 B. 50 C. 119 D. 128

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知在ABCD中,E,F(xiàn)是對角線BD上的兩點(diǎn),則以下條件不能判斷四邊形AECF為平行四邊形的是(
          A.BE=DF
          B.AF⊥BD,CE⊥BD
          C.∠BAE=∠DCF
          D.AF=CE

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABCD中,E為BC的中點(diǎn),連接AE并延長交DC的延長線于點(diǎn)F,連接BF,AC.求證:∠BAC=∠BFC.

          查看答案和解析>>

          同步練習(xí)冊答案