日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,直線y=x+n與x軸交于點A,與y軸交于點B(點A與點B不重合),拋物線y=﹣ x2﹣2x+c經(jīng)過點A、B,拋物線的頂點為C.

          (1)∠BAO=°;
          (2)求tan∠CAB的值;
          (3)在拋物線上是否存在點P,能夠使∠PCA=∠BAC?如果存在,請求出點P的坐標;如果不存在,請說明理由.

          【答案】
          (1)45
          (2)

          解:由(1)得:B(0,n),A(﹣n,0),

          ∵拋物線y=﹣ x2﹣2x+c經(jīng)過點A、B

          ,解得 (舍去)

          ∴A(﹣6,0),B(0,6),直線AB的解析式為:y=x+6,

          拋物線為:y=﹣ ﹣2x+6=﹣ (x+2)2+8,

          ∴拋物線的頂點為C(﹣2,8),

          設拋物線的對稱軸為直線l,連結BC,

          如圖1,過點B作BD⊥l,則BD=CD=2,BD∥x軸,

          ∴∠CBD=45°,

          又BD∥x軸,

          ∴∠DBA=∠BAO=45°,

          ∴∠CBA=∠CBD+∠DBA=90°,

          在Rt△CDB中,BC= =2 ,

          在Rt△AOB中,AB= =6 ,

          ∴在Rt△ABC中,tan∠CAB= =


          (3)

          解:①當點P在CA左側時,如圖2,

          延長BD交拋物線于點E,當∠PCA=∠BAC時,CP∥AB,

          此時,點P與點E重合,點P的坐標是(﹣4,6);

          ②當點P在CA右側時,如圖3,過點A作AC的垂線交CP于點F,

          過點A作y軸的平行線m,過點C作CM⊥m,過點F作FN⊥m,

          由于tan∠BAC= ,所以tan∠ACF=tan∠ACP=

          ∵Rt△CMA∽Rt△ANF,

          , ,AN= CM= ,NF= MA=

          ∴F(﹣ ,﹣ );

          易求得直線CF的解析式為:y=7x+22,

          ,消去y,得x2+18x+32=0,

          解得x=16或x=﹣2(舍去),

          因此點P的坐標(﹣16,﹣90);

          綜上所述,P的坐標是(﹣4,6)或(﹣16,﹣90).


          【解析】解:(1)y=x+n,
          當x=0時,y=n,則B(0,n),
          當y=0時,x=﹣n,則A(﹣n,0),
          ∴OA=OB=n,
          ∴△AOB是等腰直角三角形,
          ∴∠BAO=45°,
          所以答案是:45;

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,直線AB,CD相交于點O,OA平分∠EOC.

          (1)若∠EOC=80°,求∠BOD的度數(shù);

          (2)若∠EOC=EOD,求∠BOD的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】網(wǎng)癮低齡化問題已經(jīng)引起社會各界的高度關注,有關部門在全國范圍內對12﹣35歲的網(wǎng)癮人群進行了簡單的隨機抽樣調查,繪制出以下兩幅統(tǒng)計圖.
          請根據(jù)圖中的信息,回答下列問題:
          (1)這次抽樣調查中共調查了人;
          (2)請補全條形統(tǒng)計圖;
          (3)扇形統(tǒng)計圖中18﹣23歲部分的圓心角的度數(shù)是;
          (4)據(jù)報道,目前我國12﹣35歲網(wǎng)癮人數(shù)約為2000萬,請估計其中12﹣23歲的人數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,ABCD,點O是直線AB上一點,OC平分∠AOF.

          (1)求證:∠DCO=COF;

          (2)若∠DCO=40°,求∠EDF的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在△ABC中,AB=AC,∠B=30°,BC=12.
          (1)用尺規(guī)作圖的方法作AB的垂直平分線MN,分別交BC、AB于點M、N(保留作圖痕跡,不要求寫作法);
          (2)求第(1)題中的CM的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,正方形ABCD的邊長為1,E、F、G、H分別是AB、BC、CD、DA邊上的動點(不含端點),且EG、FH均過正方形的中心O.

          (1)填空:OHOF (“>”、“<”、“=”);
          (2)當四邊形EFGH為矩形時,請問線段AE與AH應滿足什么數(shù)量關系;
          (3)當四邊形EFGH為正方形時,AO與EH交于點P,求OP2+PHPE的最小值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,BD是ABCD的一條對角線.AE⊥BD于點E,CF⊥BD于點F.求證:∠DAE=∠BCF.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖所示,在△ABD中,∠A是直角,AB=3,AD=4,BC=12,DC=13,求四邊形ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),,按這樣的運動規(guī)律,經(jīng)過第2017次運動后,動點P的坐標是______

          查看答案和解析>>

          同步練習冊答案