日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,直線l1與坐標軸分別交于點A、B,經(jīng)過原點的直線l2與AB交于點C,與過點A且平行于y軸的直線交于點D,已知點C(3,),且OA=8.在直線AB上取點P,過點P作y軸的平行線,與CD交于點Q,以PQ為邊向右作正方形PQEF.設(shè)點P的橫坐標為t.
          (1)點求直線l1的解析式;
          (2)當點P在線段AC上時,試求正方形PQEF與△ACD重疊部分(陰影部分)的面積的最大值;
          (3)設(shè)點M坐標為,在點P的運動過程中,點M能否在正方形PQEF內(nèi)部?若能,求出t的取值范圍;若不能,試說明理由.

          【答案】分析:(1)本題需先根據(jù)已知條件,設(shè)出直線l1的解析式再根據(jù)C點的坐標和OA的長,求出k與b的值來,即可求出結(jié)果.
          (2)先根據(jù)題意得出P、Q點的坐標,從而解出t的值,然后再分兩種情況進行討論,分別得出S的最大值,及可求出結(jié)果.
          (3)本題分兩種情況進行討論,當t<3時和t>3時,分別求出t的取值范圍,即可求出結(jié)果.
          解答:解:(1)設(shè)直線l1的解析式為y=kx+b,
          ∵直線l1與直線l2交于點C,
          又∵OA=8,
          ∴把C(3,),A(8,0)代入上式得:
          ,
          解得:b=6,k=-,
          ∴直線l1的解析式為:;

          (2)點P在線段AC上時,根據(jù)題意有:,,

          當EF在AD上時,t+2t-6=8,有,
          時,S=(2t-6)2,
          時,S最大=,
          時,
          時,;
          所以,S的最大值為;

          (3)當t<3時,有,
          解得:t<2,
          當t>3時,有,
          解得:3.6<t<4,
          點M能在正方形PQEF內(nèi)部,此時t的取值范圍是3.6<t<4或t<2.
          點評:本題主要考查了一次函數(shù)的綜合應(yīng)用,解題時要注意知識的綜合運用,是一道很好的題.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          如圖,直線l1與坐標軸分別交于點A、B,經(jīng)過原點的直線l2與AB交于點C,與過點A且平行于y軸的直線交于點D,已知點C(3,
          15
          4
          ),且OA=8.在直線AB上取點P,過點P作y軸精英家教網(wǎng)的平行線,與CD交于點Q,以PQ為邊向右作正方形PQEF.設(shè)點P的橫坐標為t.
          (1)點求直線l1的解析式;
          (2)當點P在線段AC上時,試求正方形PQEF與△ACD重疊部分(陰影部分)的面積的最大值;
          (3)設(shè)點M坐標為(4,
          9
          2
          )
          ,在點P的運動過程中,點M能否在正方形PQEF內(nèi)部?若能,求出t的取值范圍;若不能,試說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2011•裕華區(qū)二模)如圖,直線l1與l2相交于點P,點P橫坐標為-1,l1的解析表達式為y=
          1
          2
          x+3,且l1與y軸交于點A,l2與y軸交于點B,點A與點B恰好關(guān)于x軸對稱.
          (1)求點B的坐標;
          (2)求直線l2的解析表達式;
          (3)若點M為直線l2上一動點,直接寫出使△MAB的面積是△PAB的面積的
          1
          2
          的點M的坐標;
          (4)當x為何值時,l1,l2表示的兩個函數(shù)的函數(shù)值都大于0?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知:如圖,直線l1與y軸交點坐標為(0,-1),直線l2與x軸交點坐標為(3,0),兩直線交點為P(1,1),解答下面問題:
          (1)求出直線l1的解析式;
          (2)請列出一個二元一次方程組,要求能夠根據(jù)圖象所提供的信息條件直接得到該方程組的解為
          x=1
          y=1
          ;
          (3)當x為何值時,l1、l2表示的兩個一次函數(shù)的函數(shù)值都大于0?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,直線l1與l2相交于點P,l1的函數(shù)表達式y(tǒng)=2x+3,點P的橫坐標為-1,且l2交y軸于點A(0,-1).
          (1)求出點P的坐標;
          (2)求出直線l2的函數(shù)關(guān)系式;
          (3)求l1、l2與x軸所圍成的△PBC的面積.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          如圖,直線l1與坐標軸分別交于點A、B,經(jīng)過原點的直線l2與AB交于點C,與過點A且平行于y軸的直線交于點D,已知點C(3,數(shù)學公式),且OA=8.在直線AB上取點P,過點P作y軸的平行線,與CD交于點Q,以PQ為邊向右作正方形PQEF.設(shè)點P的橫坐標為t.
          (1)點求直線l1的解析式;
          (2)當點P在線段AC上時,試求正方形PQEF與△ACD重疊部分(陰影部分)的面積的最大值;
          (3)設(shè)點M坐標為數(shù)學公式,在點P的運動過程中,點M能否在正方形PQEF內(nèi)部?若能,求出t的取值范圍;若不能,試說明理由.

          查看答案和解析>>

          同步練習冊答案