【題目】如圖,在四邊形ABCD中,AD∥BC,AB=BC,對角線AC、BD交于點(diǎn)O,BD平分∠ABC,過點(diǎn)D作DE⊥BC,交BC的延長線于點(diǎn)E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若DC=2,AC=4,求OE的長.
【答案】(1)證明見解析;(2)4.
【解析】
(1)由AD∥BC,BD平分∠ABC,可得AD=AB,結(jié)合AD∥BC,可得四邊形ABCD是平行四邊形,進(jìn)而,可證明四邊形ABCD是菱形,
(2)由四邊形ABCD是菱形,可得OC=AC=2,在Rt△OCD中,由勾股定理得:OD=4,根據(jù)“在直角三角形中,斜邊上的中線等于斜邊的一半”,即可求解.
(1)證明:∵AD∥BC,
∴∠ADB=∠CBD,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∴∠ADB=∠ABD,
∴AD=AB,
∵AB=BC,
∴AD=BC,
∵AD∥BC,
∴四邊形ABCD是平行四邊形,
又∵AB=BC,
∴四邊形ABCD是菱形;
(2)解:∵四邊形ABCD是菱形,
∴AC⊥BD,OB=OD,OA=OC=AC=2,
在Rt△OCD中,由勾股定理得:OD==4,
∴BD=2OD=8,
∵DE⊥BC,
∴∠DEB=90°,
∵OB=OD,
∴OE=BD=4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)
的圖象交于
、
兩點(diǎn),點(diǎn)
在以
為圓心,1為半徑的
上,
是
的中點(diǎn),已知
長的最小值為1,則
的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1為某教育網(wǎng)站一周內(nèi)連續(xù)7天日訪問總量的條形統(tǒng)計(jì)圖,如圖2為該網(wǎng)站本周學(xué)生日訪問量占日訪問總量的百分比統(tǒng)計(jì)圖.
請你根據(jù)統(tǒng)計(jì)圖提供的信息完成下列填空:
(1)這一周訪問該網(wǎng)站一共有 萬人次;
(2)周日學(xué)生訪問該網(wǎng)站有 萬人次;
(3)周六到周日學(xué)生訪問該網(wǎng)站的日平均增長率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AB與軸交于點(diǎn)C,與雙曲線
交于A(3,
)、B(-5,
)兩點(diǎn).AD⊥
軸于點(diǎn)D,BE∥
軸且與
軸交于點(diǎn)E.
(1)求點(diǎn)B的坐標(biāo)及直線AB的解析式;
(2)判斷四邊形CBED的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為的正方形
的對角線
與
交于點(diǎn)
,將正方形
沿直線
折疊,點(diǎn)
落在對角線
上的點(diǎn)
處,折痕
交
于點(diǎn)
,則
( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為2a的等邊△ABC中,M是高CH所在直線上的一個動點(diǎn),連接MB,將線段BM繞點(diǎn)B逆時針旋轉(zhuǎn)60°得到BN,連接HN.則在點(diǎn)M運(yùn)動過程中,線段HN長度的最小值是( 。
A. B. aC.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(1,0).
(1)當(dāng)b=2,c=﹣3時,求二次函數(shù)的解析式及二次函數(shù)最小值;
(2)二次函數(shù)的圖象經(jīng)過點(diǎn)B(m,e),C(3﹣m,e)且對任意實(shí)數(shù)x,函數(shù)值y都不小于﹣
.
①求此時二次函數(shù)的解析式;
②若次函數(shù)與y軸交于點(diǎn)D,在對稱軸上存在一點(diǎn)P,使得PA+PD有最小值,求點(diǎn)P坐標(biāo)及PA+PD的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖像經(jīng)過
,
兩點(diǎn).
(1)求該函數(shù)的解析式;
(2)若該二次函數(shù)圖像與軸交于
、
兩點(diǎn),求
的面積;
(3)若點(diǎn)在二次函數(shù)圖像的對稱軸上,當(dāng)
周長最短時,求點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與
軸交于點(diǎn)
,直線
與
軸交于點(diǎn)
與
軸左側(cè)拋物線交于點(diǎn)
,直線
與
軸右側(cè)拋物線交于點(diǎn)
.
(1)求拋物線的解析式;
(2)點(diǎn)是直線
上方拋物線上一動點(diǎn),求
面積的最大值;
(3)點(diǎn)是拋物線上一動點(diǎn),點(diǎn)
是拋物線對稱軸上一動點(diǎn),請直接寫出以點(diǎn)
為頂點(diǎn)的四邊形是平行四邊形時點(diǎn)
的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com