日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,在ABCD中,AB=2,BC=6,∠D=60°,點EB點出發(fā)沿著線段BC每秒1個單位長度的速度向C運動,同時點FB點出發(fā)沿著射線BC每秒2單位長度的速度向C運動,以EF為邊在直線BC上方作等邊△EFG,設(shè)點E、F的運動時間為t秒,其中0t4

          1)當t=    秒時,點G落在線段AD上;

          2)如圖2,連接BG,試說明:無論t為何值,BG始終平分∠ABC

          3)求△EFGABCD重疊部分面積yt之間的函數(shù)關(guān)系式,當t取何值時,y有最大值?并求出y的最大值.

          【答案】12;(2)理由見解析;(3y;當t時,y的最大值為:

          【解析】

          1)設(shè)等邊三角形的邊長為a,等邊EFG的邊長為t,當點G落在線段AD上,即等邊EFG的高等于ABCD的高.

          2)如圖1,GEF為邊長為t的等邊三角形,BE=t=EF=GE,則∠GBE=EGB,即可求解;
          3)①當0t≤2時,重疊部分為EFG,y=SEFG=t2;②當2t≤3時,如圖2,重疊部分為四邊形HMEF,y=SEFG-SHMG=t2-t-22=t-;③當3t≤4時,y=SGEF-SGHM+SMND+SNCF),即可求解.

          1)設(shè)等邊三角形的邊長為a,則面積為:a2,

          ABCD的高為ABsinABC=ABsinD

          等邊EFG的邊長為t,則高為t

          當點G落在線段AD上,t,解得:t=2

          故答案為:2;

          2)如圖1,GEF為邊長為t的等邊三角形,

          BE=t=EF=GE,則∠GBE=EGB

          GBE=60°=2GBE=2EGB,

          故∠GBE=30°,而∠ABC=D=60°,

          ABG=GBE=30°,

          BG始終平分∠ABC;

          3)△EFG始終為邊長為t的等邊三角形,則SEFGt2,

          ①當0t≤2時,重疊部分為△EFG

          y=SEFGt2;

          此時,當t=2時,y最大值為;

          ②當2t≤3時,如圖2,重疊部分為四邊形HMEF,

          則△HMG為邊長為(t2)的等邊三角形,

          y=SEFGSHMGt2(t2)2t;

          t=3時,y的最大值為:2;

          ③當3t≤4時,

          GMH、△MND、△FCN均為等邊三角形,

          GMH的邊長HG=GEHE=GEAB=t2,

          FCN的邊長FC=EFEC=t(6t)=2t6,

          MND的邊長MN=MFNF=2(2t6)=82t

          y=SGEF(SGHM+SMND+SNCF)[t2(t2)2(2t6)2(82t)2]=2t2+15t26

          t時,y的最大值為:;

          綜上,y

          t時,y的最大值為:

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】下面是小東設(shè)計的過圓外一點作這個圓的兩條切線的尺規(guī)作圖過程.

          已知:⊙O及⊙O外一點P

          求作:直線PA和直線PB,使PA切⊙O于點A,PB切⊙O于點B

          作法:如圖,

          ①連接OP,分別以點O和點P為圓心,大于OP的同樣長為半徑作弧,兩弧分別交于點MN;

          ②連接MN,交OP于點Q,再以點Q為圓心,OQ的長為半徑作弧,交⊙O于點A和點B;

          ③作直線PA和直線PB.

          所以直線PAPB就是所求作的直線.

          根據(jù)小東設(shè)計的尺規(guī)作圖過程,

          1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

          2)完成下面的證明.

          證明:∵OP是⊙Q的直徑,

          OAP=∠OBP________° )(填推理的依據(jù)).

          PAOA,PBOB

          OA,OB為⊙O的半徑,

          PA,PB是⊙O的切線.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,拋物線l1y1a(x+1)2+2l2y2=﹣(x2)21交于點B(1,﹣2),且分別與y軸交于點DE.過點Bx軸的平行線,交拋物線于點A、C,則以下結(jié)論:

          ①無論x取何值,y2總是負數(shù);

          l2可由l1向右平移3個單位,再向下平移3個單位得到;

          ③當﹣3x1時,隨著x的增大,y1y2的值先增大后減小;

          ④四邊形AECD為正方形.

          其中正確的是(  )

          A.1B.2C.3D.4

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某數(shù)學“綜合與實踐”小組的同學把“測量大橋斜拉索頂端到橋面的距離”作為一項課題活動,他們制訂了測量方案,并利用課余時間借助該橋斜拉索完成了實地測量.測量結(jié)果如下表.

          項目

          內(nèi)容

          課題

          測量斜拉索頂端到橋面的距離

          測量示意圖

          說明:大橋兩側(cè)一組斜拉索AC,BC相交于點C,分別與橋面交于AB兩點,且點A,BC在同一豎直平面內(nèi).

          測量數(shù)據(jù)

          A的度數(shù)

          B的度數(shù)

          AB的長度

          45°

          30°

          240

          請幫助該小組根據(jù)上表中的測量數(shù)據(jù),求斜拉索頂端點CAB的距離.(結(jié)果精確到0.1米)(參考數(shù)據(jù):1.414,1.732

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】網(wǎng)購已經(jīng)成為一種時尚,某網(wǎng)絡(luò)購物平臺“雙十一”全天交易額逐年增長,2016年交易額為500億元,2018年交易額為720億元。

          (1)2016年至2018年“雙十一”交易額的年平均增長率是多少?

          (2)若保持原來的增長率,試計算2019年該平臺“雙十一”的交易額將達到多少億元?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某班13位同學參加每周一次的衛(wèi)生大掃除,按學校的衛(wèi)生要求需要完成總面積為60m2的三個項目的任務(wù),三個項目的面積比例和每人每分鐘完成各所示:項目的工作量如圖:

          1)從統(tǒng)計圖中可知:擦玻璃的面積占總面積的百分比為   ,每人每分鐘擦課桌椅   m2;

          2)掃地拖地的面積是   m2;

          3)他們一起完成掃地和拖地任務(wù)后,把這13人分成兩組,一組去擦玻璃,一組去擦課桌椅,如果你是衛(wèi)生委員,該如何分配這兩組的人數(shù),才能最快地完成任務(wù)?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,要建一個長方形養(yǎng)雞場,養(yǎng)雞場的一邊靠墻(墻長25米),另三邊用竹籬笆圍成,竹籬笆的長為40米,若要圍成的養(yǎng)雞場的面積為180平方米,求養(yǎng)雞場的長、寬各為多少米,設(shè)與墻平行的一邊長為米.

          1)填空:(用含的代數(shù)式表示)另一邊長為 米;

          2)列出方程,并求出問題的解.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,ABC 為等腰直角三角形,∠ACB90°,點 M AB 邊的中點,點 N 為射線 AC 上一點,連接 BN,過點 C CDBN 于點 D,連接 MD,作∠BNE=∠BNA,邊 EN 交射線 MD 于點 E,若 AB20,MD14,則 NE 的長為___.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知,二次三項式﹣x2+2x+3

          1)關(guān)于x的一元二次方程﹣x2+2x+3=﹣mx2+mx+2m為整數(shù))的根為有理數(shù),求m的值;

          2)在平面直角坐標系中,直線y=﹣2x+n分別交x,y軸于點A,B,若函數(shù)y=﹣x2+2|x|+3的圖象與線段AB只有一個交點,求n的取值范圍.

          查看答案和解析>>

          同步練習冊答案