日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,過(guò)A(8,0)、B(0,8
          3
          )兩點(diǎn)的直線與直線y=
          3
          x
          交于點(diǎn)C、平行于y軸的直線l從原點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿x軸向右平移,到C點(diǎn)時(shí)停止;l分別交線段BC、OC于點(diǎn)D、E,以DE為邊向左側(cè)作精英家教網(wǎng)等邊△DEF,設(shè)△DEF與△BCO重疊部分的面積為S(平方單位),直線l的運(yùn)動(dòng)時(shí)間為t(秒).
          (1)直接寫出C點(diǎn)坐標(biāo)和t的取值范圍;
          (2)求S與t的函數(shù)關(guān)系式;
          (3)設(shè)直線l與x軸交于點(diǎn)P,是否存在這樣的點(diǎn)P,使得以P、O、F為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
          分析:(1)要求C點(diǎn)的坐標(biāo),應(yīng)先根據(jù)題意得出直線AB的方程,再與y=
          3
          聯(lián)立,得出的交點(diǎn)的坐標(biāo)即為C點(diǎn)的坐標(biāo).而t的取值范圍的最大值只要用C點(diǎn)橫坐標(biāo)除以1即可.
          (2)解此題時(shí)可設(shè)D、E兩點(diǎn)的橫坐標(biāo)為t,再根據(jù)l與AB、y=
          3
          兩條直線相交即可得出D、E關(guān)于t的坐標(biāo).再根據(jù)等邊三角形各個(gè)角均為60°,做DE邊上的高,運(yùn)用勾股定理即可得出高的長(zhǎng)度(關(guān)于t).再分別討論t的取值,畫出圖形,代入各自對(duì)應(yīng)的面積公式,化簡(jiǎn)后即可得出S關(guān)于t的方程.
          (3)要使△FOP為等腰三角形,則腰只能是OF、FP,由此只要設(shè)出P、F兩點(diǎn)的坐標(biāo),根據(jù)兩點(diǎn)之間的坐標(biāo)公式,得出關(guān)于t的代數(shù)式,令OF=FP,結(jié)合t的取值,即可得出答案.
          解答:解:(1)設(shè)AB的解析式為y=kx+b,
          把A(8,0)、B(0,8
          3
          )分別代入解析式得,
          8k+b=0
          b=8
          3
          ,
          解得k=-
          3
          ,
          則函數(shù)解析式為y=-
          3
          x+8
          3

          將y=-
          3
          x+8
          3
          和y=
          3
          x組成方程組得,
          y=-
          3
          x+8
          3
          y=
          3
          x
          ,精英家教網(wǎng)
          解得
          x=4
          y=4
          3

          故得C(4,4
          3
          ),
          ∴t的取值范圍是:0≤t≤4;

          (2)作EM⊥y軸于M,DG⊥y軸于點(diǎn)G,
          ∵D點(diǎn)的坐標(biāo)是(t,-
          3
          t+8
          3
          ),E的坐標(biāo)是(t,
          3
          t

          ∴DE=-
          3
          t+8
          3
          -
          3
          t
          =8
          3
          -2
          3
          t
          ;
          ∴等邊△DEF的DE邊上的高為:
          3
          2
          DE=12-3t;
          根據(jù)E點(diǎn)的坐標(biāo)(t,
          3
          t
          ),以及∠MNE=60°,
          故ME=t,MN=tan30°ME=
          3
          3
          t,
          同理可得:GH=
          3
          3
          t,
          ∴可求梯形上底為:8
          3
          -2
          3
          t
          -
          2
          3
          3
          t
          ,
          ∴當(dāng)點(diǎn)F在BO邊上時(shí):12-3t=t,
          ∴t=3,
          當(dāng)0≤t<3時(shí),重疊部分為等腰梯形,可求梯形面積為:
          S=
          t
          2
          (8
          3
          -2
          3
          t+8
          3
          -2
          3
          t-
          2
          3
          3
          t)

          =
          t
          2
          (16
          3
          -
          14
          3
          3
          t)
          精英家教網(wǎng)
          =-
          7
          3
          3
          t2+8
          3
          t
          ;
          當(dāng)3≤t≤4時(shí),重疊部分為等邊三角形
          S=
          1
          2
          (8
          3
          -2
          3
          t)(12-3t)

          =3
          3
          t2-24
          3
          t+48
          3
          ;

          (3)存在,P(
          24
          7
          ,0);
          說(shuō)明:∵FO≥4
          3
          ,F(xiàn)P≥4
          3
          ,OP≤4,△DEF是等邊三角形,
          ∴以P,O,F(xiàn)為頂點(diǎn)的等腰三角形,腰只有可能是FO,F(xiàn)P,
          若FO=FP時(shí),t=2(12-3t),
          解得:t=
          24
          7

          ∴P(
          24
          7
          ,0).
          點(diǎn)評(píng):本題是一個(gè)綜合題,主要考查了一次函數(shù)的性質(zhì),等邊三角形的性質(zhì),以及規(guī)則圖形的面積計(jì)算.在解本題時(shí)要注意討論t的取值范圍.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知如圖,過(guò)O且半徑為5的⊙P交x的正半軸于點(diǎn)M(2m,0)、交y軸的負(fù)半軸于點(diǎn)D,弧OBM與弧OAM關(guān)于x軸對(duì)稱,其中A、B、C是過(guò)點(diǎn)P且垂直于x軸的直線與兩弧及圓的交點(diǎn).
          (1)當(dāng)m=4時(shí),
          ①填空:B的坐標(biāo)為
           
          ,C的坐標(biāo)為
           
          ,D的坐標(biāo)為
           
          ;
          ②若以B為頂點(diǎn)且過(guò)D的拋物線交⊙P于點(diǎn)E,求此拋物線的函數(shù)關(guān)系式和寫出點(diǎn)E的坐標(biāo);
          ③除D點(diǎn)外,直線AD與②中的拋物線有無(wú)其它公共點(diǎn)并說(shuō)明理由.
          (2)是否存在實(shí)數(shù)m,使得以B、C、D、E為頂點(diǎn)的四邊形組成菱形?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,過(guò)⊙O上一點(diǎn)A的切線AC與⊙O直徑BD的延長(zhǎng)線交于點(diǎn)C,過(guò)A作AE⊥BC于點(diǎn)E.
          (1)求證:∠CAE=2∠B;
          (2)已知:AC=8,且CD=4,求⊙O的半徑及線段AE的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          22、已知:如圖,過(guò)正方形ABCD的頂點(diǎn)A作一條直線,分別交BD、CD、BC的延長(zhǎng)線于E、F、G.求證:
          (1)∠DAF=∠DCE;
          (2)CE與△CGF的外接圓⊙O相切.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,過(guò)點(diǎn)P(2,
          2
          )作x軸的平行線交y軸于點(diǎn)A,交雙曲線y=
          k
          x
          (x>0)于點(diǎn)N,作PM⊥AN交雙曲線y=
          k
          x
          (x>0)于精英家教網(wǎng)點(diǎn)M,連接AM.已知PN=4.
          (1)求k的值;
          (2)設(shè)直線MN解析式為y=ax+b,求不等式
          k
          x
          ≥ax+b的解集;
          (3)試判斷△AMN的形狀?并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,過(guò)⊙O外一點(diǎn)M作⊙O的兩條切線,切點(diǎn)為A、B,連接AB、OA、OB、C、D在⊙O上居于弦AB兩端,過(guò)點(diǎn)D作⊙O的切線交MA、MB于E、F,連接OE、OF、CA、CB,則圖中與∠ACB相等的角(不包含∠ACB)有( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案