日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知點(diǎn)A的坐標(biāo)是(-1,0),點(diǎn)B的坐標(biāo)是(9,0),以AB為直徑作⊙O′,交y軸的負(fù)半軸于點(diǎn)C,連接AC,BC,過A,B,C三點(diǎn)作拋物線.
          (1)求拋物線的解析式;
          (2)點(diǎn)E是AC延長線上一點(diǎn),∠BCE的平分線CD交⊙O′于點(diǎn)D,連接BD,求直線BD的解析式;
          (3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使得∠PDB=∠CBD?如果存在,請求出點(diǎn)P的坐標(biāo);如果不存在,請說明理由.
          第三問改成,在(2)的條件下,點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PCD的面積是△BCD面積的三分之一,求此時(shí)點(diǎn)P的坐標(biāo).
          (1)∵以AB為直徑作⊙O′,交y軸的負(fù)半軸于點(diǎn)C,
          ∴∠OCA+∠OCB=90°,
          又∵∠OCB+∠OBC=90°,
          ∴∠OCA=∠OBC,
          又∵∠AOC=∠COB=90°,
          ∴△AOC△COB,(1分)
          OA
          OC
          =
          OC
          OB

          又∵A(-1,0),B(9,0),
          1
          OC
          =
          OC
          9
          ,
          解得OC=3(負(fù)值舍去).
          ∴C(0,-3),
          故設(shè)拋物線解析式為y=a(x+1)(x-9),
          ∴-3=a(0+1)(0-9),解得a=
          1
          3
          ,
          ∴二次函數(shù)的解析式為y=
          1
          3
          (x+1)(x-9),
          即y=
          1
          3
          x2-
          8
          3
          x-3.(4分)

          (2)∵AB為O′的直徑,且A(-1,0),B(9,0),
          ∴OO′=4,O′(4,0),(5分)
          ∵點(diǎn)E是AC延長線上一點(diǎn),∠BCE的平分線CD交⊙O′于點(diǎn)D,
          ∴∠BCD=
          1
          2
          ∠BCE=
          1
          2
          ×90°=45°,
          連接O′D交BC于點(diǎn)M,
          則∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=
          1
          2
          AB=5.
          ∴O′D⊥x軸
          ∴D(4,-5).(6分)
          ∴設(shè)直線BD的解析式為y=kx+b(k≠0)
          9k+b=0
          4k+b=-5
          (7分)
          解得
          k=1
          b=-9

          ∴直線BD的解析式為y=x-9.(8分)

          (3)假設(shè)在拋物線上存在點(diǎn)P,使得∠PDB=∠CBD,
          解法一:設(shè)射線DP交⊙O′于點(diǎn)Q,則
          BQ
          =
          CD

          分兩種情況(如圖所示):
          ①∵O′(4,0),D(4,-5),B(9,0),C(0,-3).
          ∴把點(diǎn)C、D繞點(diǎn)O′逆時(shí)針旋轉(zhuǎn)90°,使點(diǎn)D與點(diǎn)B重合,則點(diǎn)C與點(diǎn)Q1重合,
          因此,點(diǎn)Q1(7,-4)符合
          BQ
          =
          CD

          ∵D(4,-5),Q1(7,-4),
          ∴用待定系數(shù)法可求出直線DQ1解析式為y=
          1
          3
          x-
          19
          3
          .(9分)
          解方程組
          y=
          1
          3
          x-
          19
          3
          y=
          1
          3
          x2-
          8
          3
          x-3

          x1=
          9-
          41
          2
          y1=
          -29-
          41
          6
          x2=
          9+
          41
          2
          y2=
          -29+
          41
          6

          ∴點(diǎn)P1坐標(biāo)為(
          9+
          41
          2
          -29+
          41
          6
          ),坐標(biāo)為(
          9-
          41
          2
          ,
          -29-
          41
          6
          )不符合題意,舍去.(10分)
          ②∵Q1(7,-4),
          ∴點(diǎn)Q1關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為Q2(7,4)也符合
          BQ
          =
          CD

          ∵D(4,-5),Q2(7,4).
          ∴用待定系數(shù)法可求出直線DQ2解析式為y=3x-17.(11分)
          解方程組
          y=3x-17
          y=
          1
          3
          x2-
          8
          3
          x-3

          x1=3
          y1=-8
          ,
          x2=14
          y2=25

          ∴點(diǎn)P2坐標(biāo)為(14,25),坐標(biāo)為(3,-8)不符合題意,舍去.(12分)
          ∴符合條件的點(diǎn)P有兩個(gè):P1
          9+
          41
          2
          -29+
          41
          6
          ),P2(14,25).

          解法二:分兩種情況(如圖所示):
          ①當(dāng)DP1CB時(shí),能使∠PDB=∠CBD.
          ∵B(9,0),C(0,-3).
          ∴用待定系數(shù)法可求出直線BC解析式為y=
          1
          3
          x-3.
          又∵DP1CB,
          ∴設(shè)直線DP1的解析式為y=
          1
          3
          x+n.
          把D(4,-5)代入可求n=-
          19
          3

          ∴直線DP1解析式為y=
          1
          3
          x-
          19
          3
          .(9分)
          解方程組
          y=
          1
          3
          x-
          19
          3
          y=
          1
          3
          x2-
          8
          3
          x-3

          x1=
          9-
          41
          2
          y1=
          -29-
          41
          6
          <legend id="o5kww"></legend>
          <style id="o5kww"><abbr id="o5kww"></abbr></style>

          <strong id="o5kww"><u id="o5kww"></u></strong>
        2. <sub id="o5kww"></sub>
          x2=
          9+
          41
          2
          y2=

            1. -29+
              練習(xí)冊系列答案
              相關(guān)習(xí)題

              科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

              已知拋物線y=ax2+bx+3交x軸于點(diǎn)A(x1,0)、B(-1,0)且x1>0,AO2+BO2=10,拋物線交y軸于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).
              (1)求拋物線的解析式;
              (2)證明△ADC是直角三角形;
              (3)第一象限內(nèi),在拋物線上是否存在一點(diǎn)E,使∠ECO=∠ACB?若存在,求出點(diǎn)E的坐標(biāo).

              查看答案和解析>>

              科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

              如圖,對稱軸為直線x=
              7
              2
              的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).
              (1)求拋物線解析式及頂點(diǎn)坐標(biāo);
              (2)設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
              ①當(dāng)平行四邊形OEAF的面積為24時(shí),請判斷平行四邊形OEAF是否為菱形?
              ②是否存在點(diǎn)E,使平行四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.

              查看答案和解析>>

              科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

              在平面直角坐標(biāo)系中,已知拋物線經(jīng)過A(-4,0),B(0,-4),
              C(2,0)三點(diǎn).
              (1)求拋物線的解析式;
              (2)若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△AMB的面積為S.
              求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
              (3)若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線y=-x上的動(dòng)點(diǎn),判斷有幾個(gè)位置能夠使得點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).

              查看答案和解析>>

              科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

              如圖,已知拋物線C1:y=a(x+2)2-5的頂點(diǎn)為P,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)B的橫坐標(biāo)是1;
              (1)求a的值;
              (2)如圖,拋物線C2與拋物線C1關(guān)于x軸對稱,將拋物線C2向右平移,平移后的拋物線記為C3,拋物線C3的頂點(diǎn)為M,當(dāng)點(diǎn)P、M關(guān)于點(diǎn)O成中心對稱時(shí),求拋物線C3的解析式.

              查看答案和解析>>

              科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

              某企業(yè)為了增收節(jié)支,設(shè)計(jì)了一款成本為20元∕件的工藝品投放市場進(jìn)行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
              銷售單價(jià)x(元∕件)30405060
              每天銷售量y(件)500400300200
              (1)把上表中x、y的各組對應(yīng)值作為點(diǎn)的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點(diǎn),根據(jù)所描出的點(diǎn)猜想y是x的什么函數(shù),并求出函數(shù)關(guān)系式;
              (2)當(dāng)銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價(jià)-成本總價(jià))
              (3)當(dāng)?shù)匚飪r(jià)部門規(guī)定,該工藝品銷售單價(jià)最高不能超過45元/件,那么銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤最大?

              查看答案和解析>>

              科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

              如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx-2與x軸交于點(diǎn)A(-1,0)、B(4,0).點(diǎn)M、N在x軸上,點(diǎn)N在點(diǎn)M右側(cè),MN=2.以MN為直角邊向上作等腰直角三角形CMN,∠CMN=90°.設(shè)點(diǎn)M的橫坐標(biāo)為m.
              (1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式.
              (2)求點(diǎn)C在這條拋物線上時(shí)m的值.
              (3)將線段CN繞點(diǎn)N逆時(shí)針旋轉(zhuǎn)90°后,得到對應(yīng)線段DN.
              ①當(dāng)點(diǎn)D在這條拋物線的對稱軸上時(shí),求點(diǎn)D的坐標(biāo).
              ②以DN為直角邊作等腰直角三角形DNE,當(dāng)點(diǎn)E在這條拋物線的對稱軸上時(shí),直接寫出所有符合條件的m值.
              (參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(-
              b
              2a
              ,
              4ac-b2
              4a
              ))

              查看答案和解析>>

              科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

              善于不斷改進(jìn)學(xué)習(xí)方法的小迪發(fā)現(xiàn),對解題進(jìn)行回顧反思,學(xué)習(xí)效果更好.某一天小迪有20分鐘時(shí)間可用于學(xué)習(xí).假設(shè)小迪用于解題的時(shí)間x(單位:分鐘)與學(xué)習(xí)收益量y的關(guān)系如圖1所示,用于回顧反思的時(shí)間x(單位:分鐘)與學(xué)習(xí)收益y的關(guān)系如圖2所示(其中OA是拋物線的一部分,A為拋物線的頂點(diǎn)),且用于回顧反思的時(shí)間不超過用于解題的時(shí)間.
              (1)求小迪解題的學(xué)習(xí)收益量y與用于解題的時(shí)間x之間的函數(shù)關(guān)系式;
              (2)求小迪回顧反思的學(xué)習(xí)收益量y與用于回顧反思的時(shí)間x的函數(shù)關(guān)系式;
              (3)問小迪如何分配解題和回顧反思的時(shí)間,才能使這20分鐘的學(xué)習(xí)收益總量最
              大?

              查看答案和解析>>

              科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

              已知Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的直角坐標(biāo)系,設(shè)P、Q分別為AB、OB邊上的動(dòng)點(diǎn),他們同時(shí)分別從點(diǎn)A、O向B點(diǎn)勻速移動(dòng),移動(dòng)的速度都是1厘米/秒,設(shè)P、Q移動(dòng)時(shí)間為t秒(0≤t≤4)
              (1)試用t的代數(shù)式表示P點(diǎn)的坐標(biāo);
              (2)求△OPQ的面積S(cm2)與t(秒)的函數(shù)關(guān)系式;當(dāng)t為何值時(shí),S有最大值,并求出S的最大值;
              (3)試問是否存在這樣的時(shí)刻t,使△OPQ為直角三角形?如果存在,求出t的值,如果不存在,請說明理由.

              查看答案和解析>>