日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 閱讀以下材料并填空:平面上有n個點(n≥2)且任意三個點不在同一直線上,過這些點作直線一共能作出多少條不同的直線?
          分析:當(dāng)僅有兩個點時,可連成1條直線;當(dāng)有3個點時,可連成3條直線;當(dāng)有4個點時,可連成6條直線,當(dāng)有5個點時可連成10條直線…
          推導(dǎo):平面上有n個點,因為兩點可確定一條直線,所以每個點都可與除本身之外的其余(n-1)個點確定一條直線,即共有
          n(n-1)條直線.但因AB與BA是同一條直線,故每一條直線都數(shù)了2遍,所以直線的實際總條數(shù)為數(shù)學(xué)公式
          試結(jié)合以上信息,探究以下問題:
          平面上有n(n≥3)個點,任意3個點不在同一直線上,過任意3點作三角形,一共能作出多少個不同的三角形?
          分析:考察點的個數(shù)n和可作出的三角形的個數(shù) sn,發(fā)現(xiàn):(填下表)
          點的個數(shù)可連成的三角形的個數(shù)
          3________
          4________
          5________
          n________
          推導(dǎo):________.

          1    4    10        平面上有n個點,過不在同一直線上的三點可以確定1個三角形,取第一個點A有n種取法,取第二個點B有(n-1)種取法.取第三個點C有(n-2)種取法,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個三角形,故應(yīng)除以6,即
          分析:順次連接不在同一直線上的三個點可作1個三角形;當(dāng)有4個點時,可作4個三角形;當(dāng)有5個點時,可作10個三角形;依此類推當(dāng)有n個點時,可作個三角形.
          解答:分析:順次連接不在同一直線上的三個點可作1個三角形;當(dāng)有4個點時,可作4個三角形;當(dāng)有5個點時,可作10個三角形;依此類推當(dāng)有n個點時,可作個三角形.
          故答案為:1、4、10、
          推導(dǎo):平面上有n個點,過不在同一直線上的三點可以確定1個三角形,取第一個點A有n種取法,取第二個點B有(n-1)種取法.取第三個點C有(n-2)種取法,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個三角形,故應(yīng)除以6,即
          故答案為:
          平面上有n個點,過不在同一直線上的三點可以確定1個三角形,取第一個點A有n種取法,取第二個點B有(n-1)種取法.取第三個點C有(n-2)種取法,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個三角形,故應(yīng)除以6,即
          點評:此題考查了規(guī)律總結(jié),運用由特殊到一般的方法,進(jìn)行歸納總結(jié).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          閱讀以下材料并填空:
          問題:當(dāng)x滿足什么條件時,x>
          1
          x
          ?
          解:設(shè)y1=x,y2=
          1
          x
          則在同一直角坐標(biāo)系中畫出這兩個函數(shù)的草圖.
          聯(lián)立兩個函數(shù)的解析式得:
          y1=x
          y2=
          1
          x
          ,解得
          x=1
          y=1
          x=-1
          y=-1
          ∴兩個圖象的交點為(1,1)和(-1,-1)
          ∴由圖可知,當(dāng)-1<x<0或x>1時,x>
          1
          x
          (1)上述解題過程用的數(shù)學(xué)思想方法是
           
          ;
          (2)根據(jù)上述解題過程,試猜想x<
          1
          x
          時,x的取值范圍是
           
          ;
          (3)試根據(jù)上述解題方法,當(dāng)x滿足什么條件時,x2
          1
          x
          .(要求畫出草圖)
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          閱讀以下材料并填空.
          平面上有n個點(n≥2),且任意三個點不在同一條直線上,過這些點作直線,一共能作出多少條不同的直線?
          試探究以下問題:平面上有n(n≥3)個點,任意三個點不在同一直線上,過任意三點作三角形,一共能作出多少不同的三角形?
          (1)分析:當(dāng)僅有兩個點時,可連成1條直線;當(dāng)僅有3個點時,可作
           
          條直線;當(dāng)有4個點時,可作
           
          條直線;當(dāng)有5個點時,可作
           
          條直線;
          (2)歸納:考察點的個數(shù)n和可作出的直線的條數(shù)Sn,發(fā)現(xiàn):(填下表)
          點的個數(shù) 可連成直線的條數(shù)
          2  
          3  
          4  
          5  
           
          n  
          (3)推理:
           
          ;
          (4)結(jié)論:
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          閱讀以下材料并填空.
          平面上有n個點(n≥2),且任意三個點不在同一直線上,過這些點作直線,一共能作出多少條不同的直線?
          (1)分析:當(dāng)僅有兩個點時,可連成1條直線;
          當(dāng)有3個點時,可連成3條直線;
          當(dāng)有4個點時,可連成6條直線;
          當(dāng)有5個點時,可連成10條直線;

          (2)歸納:考察點的個數(shù)n和可連成直線的條數(shù)Sn,發(fā)現(xiàn):
          (3)推理:平面上有n個點,兩點確定一條直線.取第一個點A有n種取法,取第二個點B有(n-1)種取法,所以一共可連成n(n-1)條直線,但AB與BA是同一條直線,故應(yīng)除以2,即Sn=
          n(n-1)
          2

          (4)結(jié)論:Sn=
          n(n-1)
          2

          點的個數(shù) 可連成直線條數(shù)
          2  l=S2=
          2×1
          2
          3 3=S3=
          3×2
          2
          4  6=S4=
          4×3
          2
          5  10=S5=
          5×4
          2
          n  Sn=
          n(n-1)
          2
          試探究以下問題:
          平面上有n(n≥3)個點,任意三個點不在同一直線上,過任意三點作三角形,一共能作出多少不同的三角形?
          ①分析:
          當(dāng)僅有3個點時,可作
           
          個三角形;
          當(dāng)有4個點時,可作
           
          個三角形;
          當(dāng)有5個點時,可作
           
          個三角形;

          ②歸納:考察點的個數(shù)n和可作出的三角形的個數(shù)Sn,發(fā)現(xiàn):
          點的個數(shù) 可連成三角形個數(shù)
          3  
          4  
          5  
          n  
          ③推理:
           

          取第一個點A有n種取法,
          取第二個點B有(n-1)種取法,
          取第三個點C有(n-2)種取法,
          但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個三角形,故應(yīng)除以6.
          ④結(jié)論:
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          閱讀以下材料并填空:平面上有n個點(n≥2)且任意三個點不在同一直線上,過這些點作直線一共能作出多少條不同的直線?
          分析:當(dāng)僅有兩個點時,可連成1條直線;當(dāng)有3個點時,可連成3條直線;當(dāng)有4個點時,可連成6條直線,當(dāng)有5個點時可連成10條直線…
          推導(dǎo):平面上有n個點,因為兩點可確定一條直線,所以每個點都可與除本身之外的其余(n-1)個點確定一條直線,即共有
          n(n-1)條直線.但因AB與BA是同一條直線,故每一條直線都數(shù)了2遍,所以直線的實際總條數(shù)為
          n(n-1)
          2

          試結(jié)合以上信息,探究以下問題:
          平面上有n(n≥3)個點,任意3個點不在同一直線上,過任意3點作三角形,一共能作出多少個不同的三角形?
          分析:考察點的個數(shù)n和可作出的三角形的個數(shù) sn,發(fā)現(xiàn):(填下表)
          點的個數(shù) 可連成的三角形的個數(shù)
          3
          1
          1
          4
          4
          4
          5
          10
          10
          n
          n(n-1)(n-2)
          6
          n(n-1)(n-2)
          6
          推導(dǎo):
          平面上有n個點,過不在同一直線上的三點可以確定1個三角形,取第一個點A有n種取法,取第二個點B有(n-1)種取法.取第三個點C有(n-2)種取法,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個三角形,故應(yīng)除以6,即Sn=
          n(n-1)(n-2)
          6
          平面上有n個點,過不在同一直線上的三點可以確定1個三角形,取第一個點A有n種取法,取第二個點B有(n-1)種取法.取第三個點C有(n-2)種取法,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個三角形,故應(yīng)除以6,即Sn=
          n(n-1)(n-2)
          6

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年福建省福州市平潭縣城關(guān)中學(xué)數(shù)學(xué)模擬考試卷(解析版) 題型:解答題

          閱讀以下材料并填空:
          問題:當(dāng)x滿足什么條件時,x>?
          解:設(shè)y1=x,y2=則在同一直角坐標(biāo)系中畫出這兩個函數(shù)的草圖.
          聯(lián)立兩個函數(shù)的解析式得:,解得∴兩個圖象的交點為(1,1)和(-1,-1)
          ∴由圖可知,當(dāng)-1<x<0或x>1時,x>(1)上述解題過程用的數(shù)學(xué)思想方法是______;
          (2)根據(jù)上述解題過程,試猜想x<時,x的取值范圍是______;
          (3)試根據(jù)上述解題方法,當(dāng)x滿足什么條件時,x2.(要求畫出草圖)

          查看答案和解析>>

          同步練習(xí)冊答案