日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 一副斜邊相等的直角三角板(∠DAC=45°,∠BAC=30°),按如圖所示的方式在平面內(nèi)拼成一個四精英家教網(wǎng)邊形.
          (1)A,B,C,D四點(diǎn)在同一個圓上嗎?如果在,請寫出證明過程;如果不在,請說明理由;
          (2)過點(diǎn)D作直線l∥AC,求證:l是這個圓的切線.
          分析:(1)根據(jù)直角三角形斜邊的中線等于斜邊的一半,可得AC的中點(diǎn)O到ABCD四點(diǎn)距離相等,故A,B,C,D四點(diǎn)在同一個圓上;(2)要證l是這個圓的切線,只需證明OD⊥l即可,根據(jù)等腰直角三角形的性質(zhì)易得OD⊥AC,而l∥AC,易得證明.
          解答:精英家教網(wǎng)(1)解:A,B,C,D四點(diǎn)在同一個圓上.
          證明:取AC的中點(diǎn)O,連接OD,OB,(2分)
          ∵△ABC和△ADC是直角三角形,
          ∴OB=OD=
          1
          2
          AC=OA=OC,(4分)
          ∴A,B,C,D四點(diǎn)在⊙O上.(5分)

          (2)證明:∵Rt△ADC中,∠DAC=45°,
          ∴△DAC是等腰三角形,(7分)
          ∴OD⊥AC.(8分)
          ∵l∥AC,
          ∴OD⊥l,(9分)
          ∴l(xiāng)是⊙O的切線.(10分)
          點(diǎn)評:本題考查多點(diǎn)共圓的證明及切線的判定.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          一副直角三角板由一塊含30°的直角三角板與一塊等腰直角三角板組成,且含30°角的三角板的較長直角邊與另一三角板的斜邊相等(如圖1)

          (1)如圖1,這副三角板中,已知AB=2,AC=
          2
          3
          2
          3
          ,A′D=
          6
          6

          (2)這副三角板如圖1放置,將△A′DC′固定不動,將△ABC通過旋轉(zhuǎn)或者平移變換可使△ABC的斜邊BC經(jīng)過△A′DC′′的直角頂點(diǎn)D.
          方法一:如圖2,將△ABC繞點(diǎn)C按順時針方向旋轉(zhuǎn)角度α(0°<α<180°)
          方法二:如圖3,將△ABC沿射線A′C′方向平移m個單位長度
          方法三:如圖4,將△ABC繞點(diǎn)A按逆時針方向旋轉(zhuǎn)角度β(0°<β<180°)
          請你解決下列問題:
          ①根據(jù)方法一,直接寫出α的值為:
          15°
          15°
          ;
          ②根據(jù)方法二,計(jì)算m的值;
          ③根據(jù)方法三,求β的值.
          (3)若將△ABC從圖1位置開始沿射線A′C′平移,設(shè)AA′=x,兩三角形重疊部分的面積為y,請直接寫出y與x之間的函數(shù)關(guān)系式和相應(yīng)的自變量x的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案