日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖①,AD為等腰直角△ABC的高,點(diǎn)A和點(diǎn)C分別在正方形DEFG的邊DG和DE上,連接BG,AE.

          (1)求證:BG=AE;
          (2)將正方形DEFG繞點(diǎn)D旋轉(zhuǎn),當(dāng)線段EG經(jīng)過點(diǎn)A時(shí),(如圖②所示)

          ①求證:BG⊥GE;
          ②設(shè)DG與AB交于點(diǎn)M,若AG:AE=3:4,求 的值.

          【答案】
          (1)

          證明:如圖①,

          ∵AD為等腰直角△ABC的高,

          ∴AD=BD,

          ∵四邊形DEFG為正方形,

          ∴∠GDE=90°,DG=DE,

          在△BDG和△ADE中

          ∴△BDG≌△ADE,

          ∴BG=AE


          (2)

          ①證明:如圖②,

          ∵四邊形DEFG為正方形,

          ∴△DEG為等腰直角三角形,

          ∴∠1=∠2=45°,

          由(1)得△BDG≌△ADE,

          ∴∠3=∠2=45°,

          ∴∠1+∠3=45°+45°=90°,即∠BGE=90°,

          ∴BG⊥GE;

          ②解:設(shè)AG=3x,則AE=4x,即GE=7x,

          ∴DG= GE= x,

          ∵△BDG≌△ADE,

          ∴BG=AE=4x,

          在Rt△BGA中,AB= = =5x,

          ∵△ABD為等腰直角三角形,

          ∴∠4=45°,BD= AB= x,

          ∴∠3=∠4,

          而∠BDM=∠GDB,

          ∴△DBM∽△DGB,

          ∴BD:DG=DM:BD,即 x: x=DM: x,解得DM= x,

          ∴GM=DG﹣DM= x﹣ x= x,

          = =


          【解析】(1.)如圖①,根據(jù)等腰直角三角形的性質(zhì)得AD=BD,再根據(jù)正方形的性質(zhì)得∠GDE=90°,DG=DE,則可根據(jù)“SAS“判斷△BDG≌△ADE,于是得到BG=AE;
          (2.)①如圖②,先判斷△DEG為等腰直角三角形得到∠1=∠2=45°,再由△BDG≌△ADE得到∠3=∠2=45°,則可得∠BGE=90°,所以BG⊥GE;
          ②設(shè)AG=3x,則AE=4x,即GE=7x,利用等腰直角三角形的性質(zhì)得DG= GE= x,由(1)的結(jié)論得BG=AE=4x,則根據(jù)勾股定理得AB=5x,接著由△ABD為等腰直角三角形得到∠4=45°,BD= AB= x,然后證明△DBM∽△DGB,則利用相似比可計(jì)算出DM= x,所以GM= x,于是可計(jì)算出 的值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于點(diǎn)G,點(diǎn)E、F分別為AG、CD的中點(diǎn),連接DE、FG.

          (1)求證:四邊形DEGF是平行四邊形;

          (2)當(dāng)點(diǎn)GBC的中點(diǎn)時(shí),求證:四邊形DEGF是菱形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某水果基地計(jì)劃裝運(yùn)甲、乙、丙三種水果到外地銷售(每輛汽車規(guī)定滿載,并且只裝一種水果).如表為裝運(yùn)甲、乙、丙三種水果的重量及利潤.

          每輛汽車能裝的數(shù)量(噸)

          4

          2

          3

          每噸水果可獲利潤(千元)

          5

          7

          4


          (1)用8輛汽車裝運(yùn)乙、丙兩種水果共22噸到A地銷售,問裝運(yùn)乙、丙兩種水果的汽車各多少輛?
          (2)水果基地計(jì)劃用20輛汽車裝運(yùn)甲、乙、丙三種水果共72噸到B地銷售(每種水果不少于一車),假設(shè)裝運(yùn)甲水果的汽車為m輛,則裝運(yùn)乙、丙兩種水果的汽車各多少輛?(結(jié)果用m表示)
          (3)在(2)問的基礎(chǔ)上,如何安排裝運(yùn)可使水果基地獲得最大利潤?最大利潤是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長都是1,ABC的頂點(diǎn)都在正方形網(wǎng)格的格點(diǎn)(網(wǎng)格線的交點(diǎn))上.

          (1)請?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系,使點(diǎn)A坐標(biāo)為(1,3)點(diǎn)B坐標(biāo)為(2,1);

          (2)請作出△ABC關(guān)于y軸對稱的△A'B'C',并寫出點(diǎn)C'的坐標(biāo);

          (3)判斷△ABC的形狀.并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一次函數(shù)y=﹣2x+2的圖象與x軸、y軸分別交于點(diǎn)A,B.在y軸左側(cè)有一點(diǎn)P(﹣1,a).

          (1)如圖1,以線段AB為直角邊在第一象限內(nèi)作等腰RtABC,且∠BAC=90°,求點(diǎn)C的坐標(biāo);

          2)當(dāng)a=時(shí),求△ABP的面積;

          (3)當(dāng)a=﹣2時(shí),點(diǎn)Q是直線y=﹣2x+2上一點(diǎn),且△POQ的面積為5,求點(diǎn)Q的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】張老師要從班級里數(shù)學(xué)成績較優(yōu)秀的甲、乙兩位學(xué)生中選拔一人參加全國初中數(shù)學(xué)聯(lián)賽 為此,他對兩位同學(xué)進(jìn)行了輔導(dǎo),并在輔導(dǎo)期間測驗(yàn)了10次,測驗(yàn)成績?nèi)缦卤恚?/span>

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          68

          80

          78

          79

          78

          84

          81

          83

          77

          92

          86

          80

          75

          83

          79

          80

          85

          80

          77

          75

          利用表中數(shù)據(jù),解答下列問題:

          填空完成下表:

          平均成績

          中位數(shù)

          眾數(shù)

          80

          80

          80

          張老師從測驗(yàn)成績表中,求得甲的方差,請你計(jì)算乙10次測驗(yàn)成績的方差.

          請你根據(jù)上面的信息,運(yùn)用所學(xué)統(tǒng)計(jì)知識(shí),幫張老師選拔出參加全國數(shù)學(xué)聯(lián)賽的人選,并簡要說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,矩形ABCD中,AB=3,BC=5,點(diǎn)P是BC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),現(xiàn)將△PCD沿直線PD折疊,使點(diǎn)C落到點(diǎn)C′處;作∠BPC′的角平分線交AB于點(diǎn)E.設(shè)BP=x,BE=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】2016年11月13日巴基斯坦瓜達(dá)爾港正式開港,此港成為我國“一帶一路”必展戰(zhàn)略上的一顆璀璨的明星,某大型遠(yuǎn)洋運(yùn)輸集團(tuán)有三種型號(hào)的遠(yuǎn)洋貨輪,每種型號(hào)的貨輪載重量和盈利情況如下表所示:

          平均貨輪載重的噸數(shù)(萬噸)

          10

          5

          7.5

          平均每噸貨物可獲例如(百元)

          5

          3.6

          4


          (1)若用乙、丙兩種型號(hào)的貨輪共8艘,將55萬噸的貨物運(yùn)送到瓜達(dá)爾港,問乙、丙兩種型號(hào)的貨輪各多少艘?
          (2)集團(tuán)計(jì)劃未來用三種型號(hào)的貨輪共20艘裝運(yùn)180萬噸的貨物到國內(nèi),并且乙、丙兩種型號(hào)的貨輪數(shù)量之和不超過甲型貨輪的數(shù)量,如果設(shè)丙型貨輪有m艘,則甲型貨輪有艘,乙型貨輪有艘(用含有m的式子表示),那么如何安排裝運(yùn),可使集團(tuán)獲得最大利潤?最大利潤的多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙兩家超市同價(jià)銷售同一款可拆分式驅(qū)蚊器,1套驅(qū)蚊器由1個(gè)加熱器和1瓶電熱蚊香液組成.電熱蚊香液作為易耗品可單獨(dú)購買,1瓶電熱蚊香液的售價(jià)是1套驅(qū)蚊器的.已知電熱蚊香液的利潤率為20%,整套驅(qū)蚊器的利潤率為25%.張阿姨從甲超市買了1套這樣的驅(qū)蚊器,并另外買了4瓶電熱蚊香液,超市從中共獲利10元.

          (1)求1套驅(qū)蚊器和1瓶電熱蚊香液的售價(jià);

          (2)為了促進(jìn)該款驅(qū)蚊器的銷售,甲超市打8.5折銷售,而乙超市采用的銷售方法是顧客每買1套驅(qū)蚊器送1瓶電熱蚊香液.在這段促銷期間,甲超市銷售2000套驅(qū)蚊器,而乙超市在驅(qū)蚊器銷售上獲得的利潤不低于甲超市的1.2倍.問乙超市至少銷售多少套驅(qū)蚊器?

          查看答案和解析>>

          同步練習(xí)冊答案