日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,二次函數(shù)的圖象交軸于點(diǎn),點(diǎn),交軸于點(diǎn)

          1)求二次函數(shù)的解析式;

          2)連接,在直線(xiàn)上方的拋物線(xiàn)上有一點(diǎn),過(guò)點(diǎn)軸的平行線(xiàn),交直線(xiàn)于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,線(xiàn)段的長(zhǎng)為,求關(guān)于的函數(shù)關(guān)系式;

          3)若點(diǎn)軸上,是否存在點(diǎn),使以、、為頂點(diǎn)的三角形是等腰三角形,若存在,直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

          【答案】1y=-x2-x+2;(2l=-n2-2n;(3)存在,(-1,0)或(1+0)或(1-,0)或(-0).

          【解析】

          1)利用交點(diǎn)式求二次函數(shù)的解析式;
          2)設(shè)點(diǎn)Nn,-n2-n+2),則點(diǎn)Fn,n+2),l=-n2-n+2-n+2=-n2-2n;
          3)分CB=CM、BC=BM、BM=CM三種情況,分別求解即可.

          解:(1)∵二次函數(shù)y=ax2+bx+c的圖象交x軸于A(-2,0),B(1,0),
          設(shè)二次函數(shù)的解析式為:y=a(x+2)(x-1),
          把C(0,2)代入得:2=a(0+2)(0-1),
          a=-1,

          ∴y=-(x+2)(x-1)=-x2-x+2,

          故拋物線(xiàn)的表達(dá)式為:y=-x2-x+2;
          2)設(shè)直線(xiàn)AC的解析式為:y=kx+b,
          A-2,0)、C02)代入得: ,
          解得: ,
          ∴直線(xiàn)AC的解析式為:y=x+2,

          設(shè)點(diǎn)Nn,-n2-n+2),則點(diǎn)Fn,n+2),

          l=-n2-n+2-n+2=-n2-2n;
          3)存在,分三種情況:
          ①如圖2,當(dāng)BC=CM1時(shí),M1-1,0);


          ②如圖2,由勾股定理得:BC= ,
          B為圓心,以BC為半徑畫(huà)圓,交x軸于M2、M3,則BC=BM2=BM3=,
          此時(shí),M21-,0),M31+,0);
          ③如圖3,作BC的中垂線(xiàn),交x軸于M4,連接CM4,則CM4=BM4,


          設(shè)OM4=x,則CM4=BM4=x+1,
          由勾股定理得:22+x2=1+x2
          解得:x=,
          M4x軸的負(fù)半軸上,
          M4-0),

          綜上,點(diǎn)M的坐標(biāo)為:(-1,0)或(1+,0)或(1-0)或(-,0).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,某數(shù)學(xué)興趣小組利用一棵古樹(shù)BH測(cè)量教學(xué)樓CG的高,先在A處用高1.5米的測(cè)角儀測(cè)得古樹(shù)頂端H的仰角∠HDE45°,此時(shí)教學(xué)樓頂端G恰好在視線(xiàn)DH上,再向前走7米到達(dá)B處,又測(cè)得教學(xué)樓頂端G的仰角∠GEF60°,點(diǎn)A、B、C三點(diǎn)在同一水平線(xiàn)上.計(jì)算教學(xué)樓CG的高.(結(jié)果精確到0.1,參考數(shù)據(jù):1.4,1.7

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)ykx與拋物線(xiàn)yax2+bx+交于點(diǎn)AC,與y軸交于點(diǎn)B,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)C的橫坐標(biāo)為﹣8

          1)請(qǐng)直接寫(xiě)出直線(xiàn)和拋物線(xiàn)的解析式;

          2)點(diǎn)D是直線(xiàn)AB上方的拋物線(xiàn)上一動(dòng)點(diǎn)(不與點(diǎn)A、C重合),作DEAC于點(diǎn)E.設(shè)點(diǎn)D的橫坐標(biāo)為m.求DE的長(zhǎng)關(guān)于m的函數(shù)解析式,并寫(xiě)出DE長(zhǎng)的最大值;

          3)平移AOB,使平移后的三角形的三個(gè)頂點(diǎn)中有兩個(gè)在拋物線(xiàn)上,請(qǐng)直接寫(xiě)出平移后的點(diǎn)A對(duì)應(yīng)點(diǎn)A的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖(1),已知正方形ABCD中,點(diǎn)EF分別在邊BC、CD上,BE=DF,AEAF分別交BD于點(diǎn)G、H

          1)求證:BG=DH;

          2)連接FE,如圖(2),當(dāng)EF=BG時(shí).

          ①求證:ADAH=AFDF;

          ②直接寫(xiě)出的比值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某校舉辦學(xué)生綜合素質(zhì)大賽,分單人項(xiàng)目雙人項(xiàng)目兩種形式,比賽題目包括下列五類(lèi):.人文藝術(shù);.歷史社會(huì);.自然科學(xué);.天文地理;.體育健康.

          (1)若小明參加單人項(xiàng)目,他從中抽取一個(gè)題目,那么恰好抽中自然科學(xué)類(lèi)題目的概率為_____

          (2)小林和小麗參加雙人項(xiàng)目,比賽規(guī)定:同一小組的兩名同學(xué)的題目類(lèi)型不能相同,且每人只能抽取一次,求他們抽到天文地理體育健康類(lèi)題目的概率是多少?(用畫(huà)樹(shù)狀圖或列表的方法求解).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)y=-x2+(m-1) x+m (m為常數(shù)),其頂點(diǎn)為M

          (1)請(qǐng)判斷該函數(shù)的圖像與x軸公共點(diǎn)的個(gè)數(shù),并說(shuō)明理由;

          (2)當(dāng)-2≤m≤3時(shí),求該函數(shù)的圖像的頂點(diǎn)M縱坐標(biāo)的取值范圍;

          (3)在同一坐標(biāo)系內(nèi)兩點(diǎn)A(-1,-1)、B(1,0),△ABM的面積為S,當(dāng)m為何值時(shí),S的面積最。坎⑶蟪鲞@個(gè)最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖是二次函數(shù)圖象的一部分,對(duì)稱(chēng)軸為,且經(jīng)過(guò)點(diǎn),有下列說(shuō)法:①;②;③;④若是拋物線(xiàn)上的兩點(diǎn),則,上述說(shuō)法正確的是( )

          A.①②④B.③④C.①③④D.①②

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知正方形ABCD,點(diǎn)M是邊BA延長(zhǎng)線(xiàn)上的動(dòng)點(diǎn)(不與點(diǎn)A重合),且AM<AB,△CBE由DAM平移得到.若過(guò)點(diǎn)E作EHAC,H為垂足,則有以下結(jié)論:點(diǎn)M位置變化,使得DHC=60°時(shí),2BE=DM;無(wú)論點(diǎn)M運(yùn)動(dòng)到何處,都有DM=HM;③無(wú)論點(diǎn)M運(yùn)動(dòng)到何處,CHM一定大于135°.其中正確結(jié)論的序號(hào)為_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知平行四邊形的頂點(diǎn)的坐標(biāo)分別為頂點(diǎn)在雙曲線(xiàn)上,邊軸于點(diǎn).若四邊形的面積是面積的倍,則點(diǎn)的坐標(biāo)為_________

          查看答案和解析>>

          同步練習(xí)冊(cè)答案