日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖(1),AB=4cmACAB,BDAB,AC=BD=3cm,點(diǎn)P在線段AB上以1cm/s的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段BD上由點(diǎn)B向點(diǎn)D運(yùn)動(dòng),他們的運(yùn)動(dòng)時(shí)間為t(s).

          1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)t=1時(shí),ACPBPQ是否全等,請(qǐng)說(shuō)明理由

          2)判斷此時(shí)線段PC和線段PQ的關(guān)系,并說(shuō)明理由。

          3)如圖(2),將圖(1)中的“ACAB,BDAB”改為“∠CAB=DBA=60°”,其他條件不變,設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為x cm/s,是否存在實(shí)數(shù)x,使得ACPBPQ全等?若存在,求出相應(yīng)的xt的值;若不存在,請(qǐng)說(shuō)明理由。

          【答案】1)△ACP≌△BPQ,理由見解析;
          2PC=PQPCPQ,理由見解析;

          3)存在;

          【解析】

          1)利用SAS證得△ACP≌△BPQ;

          2)由(1)得出PC=PQ,∠ACP=BPQ,進(jìn)一步得出∠APC+BPQ=APC+ACP=90°得出結(jié)論即可;

          3)分兩種情況:①AC=BPAP=BQ,②AC=BQAP=BP,建立方程組求得答案即可.

          解:(1)如圖(1),△ACP≌△BPQ,理由如下:


          當(dāng)t=1時(shí),AP=BQ=1

          BP=AC=3,

          又∵∠A=B=90°,
          在△ACP和△BPQ中,

          ,

          ∴△ACP≌△BPQSAS).
          2PC=PQPCPQ,理由如下:

          由(1)可知△ACP≌△BPQ

          PC=PQ,∠ACP=BPQ,
          ∴∠APC+BPQ=APC+ACP=90°
          ∴∠CPQ=90°,
          PCPQ
          3)如圖(2),分兩種情況討論:

          當(dāng)AC=BP,AP=BQ時(shí),△ACP≌△BPQ,則

          ,

          解得

          當(dāng)AC=BQ,AP=BP時(shí),△ACP≌△BQP,則,

          解得

          綜上所述,存在使得△ACP與△BPQ全等.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】閱讀材料:

          小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如.善于思考的小明進(jìn)行了以下探索:

          設(shè)(其中、均為整數(shù)),則有.

          .這樣小明就找到了一種把類似的式子化為平方式的方法.

          請(qǐng)你仿照小明的方法解決下列問(wèn)題:

          (1)當(dāng)、、均為正整數(shù)時(shí),若,用含、的式子分別表示,得_________,_________.

          (2)利用所探索的結(jié)論,填空:(_____+_____)2

          (3),且、、均為正整數(shù),求的值?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在10×10的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1,網(wǎng)格中有一個(gè)格點(diǎn)△ABC(即三角形的頂點(diǎn)都在格點(diǎn)上).

          (1)在圖中作出△ABC關(guān)于直線l對(duì)稱的△A1B1C1;(要求:A與A1,B與B1,C與C1相對(duì)應(yīng))

          (2)在(1)問(wèn)的結(jié)果下,連接BB1,CC1,求四邊形BB1C1C的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,為等邊三角形,點(diǎn)坐標(biāo)為,點(diǎn)軸上位于點(diǎn)上方的一個(gè)動(dòng)點(diǎn),以為邊向的右側(cè)作等邊,連接,并延長(zhǎng)軸于點(diǎn).

          (1)求證:;

          (2)當(dāng)點(diǎn)在運(yùn)動(dòng)時(shí),是否平分?請(qǐng)說(shuō)明理由;

          (3)當(dāng)點(diǎn)在運(yùn)動(dòng)時(shí),在軸上是否存在點(diǎn),使得為等腰三角形?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】中,,,于點(diǎn),.

          1)如圖1,求證:;

          2)如圖2,若平分,求證:;

          3)若,,且為等腰三角形,則______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖1,在△ABC中,ACBC,∠ACB90°,CEAB相交于點(diǎn)D,且BECEAFCE,垂足分別為點(diǎn)E、F

          1)若AF5BE2,求EF的長(zhǎng).

          2)如圖2,取AB中點(diǎn)G,連接FC、EC,請(qǐng)判斷△GEF的形狀,并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某地下車庫(kù)出口處安裝了“兩段式欄桿”,如圖1所示,點(diǎn)A是欄桿轉(zhuǎn)動(dòng)的支點(diǎn),點(diǎn)E是欄桿兩段的聯(lián)結(jié)點(diǎn).當(dāng)車輛經(jīng)過(guò)時(shí),欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計(jì)),其中ABBC,EFBC,AEF=143°,AB=AE=1.2米,那么適合該地下車庫(kù)的車輛限高標(biāo)志牌為( )(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

          A. B. C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,等邊三角形ABC的邊長(zhǎng)為4ADBC邊上的中線,FAD邊上的動(dòng)點(diǎn)EAC邊上一點(diǎn)AE2,當(dāng)EFCF取得最小值時(shí)∠ECF的度數(shù)為( )

          A. 20° B. 25° C. 30° D. 45°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖1,在ABCD中,DHAB于點(diǎn)H,CD的垂直平分線交CD于點(diǎn)E,交AB于點(diǎn)F,AB=6,DH=4,BF:FA=1:5.

          (1)如圖2,作FGAD于點(diǎn)G,交DH于點(diǎn)M,將DGM沿DC方向平移,得到CG′M′,連接M′B.

          ①求四邊形BHMM′的面積;

          ②直線EF上有一動(dòng)點(diǎn)N,求DNM周長(zhǎng)的最小值.

          (2)如圖3,延長(zhǎng)CBEF于點(diǎn)Q,過(guò)點(diǎn)QQKAB,過(guò)CD邊上的動(dòng)點(diǎn)PPKEF,并與QK交于點(diǎn)K,將PKQ沿直線PQ翻折,使點(diǎn)K的對(duì)應(yīng)點(diǎn)K′恰好落在直線AB上,求線段CP的長(zhǎng).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案