日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:如圖,拋物線y=ax2+bx+c的頂點(diǎn)為C(1,0),且與直線l:y=x+m交y軸于同一點(diǎn)B(0,1),與直線l交于另一點(diǎn)A,D為拋物線的對(duì)稱軸與直線l的交點(diǎn),P為線段AB上的一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),過點(diǎn)P作y軸的平行線交拋物線于點(diǎn)E.
          (1)求拋物線和直線l的函數(shù)解析式,及另一交點(diǎn)A的坐標(biāo);
          (2)求△ABE的最大面積是多少?
          (3)問是否存在這樣的點(diǎn)P,使四邊形PECD為平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
          分析:(1)由拋物線y=ax2+bx+c的頂點(diǎn)為C(1,0),可設(shè)此拋物線的解析式為:y=a(x-1)2,然后由待定系數(shù)法即可求得拋物線和直線l的函數(shù)解析式,然后聯(lián)立兩個(gè)解析式,即可求得另一交點(diǎn)A的坐標(biāo);
          (2)首先過點(diǎn)E作EG⊥y軸于點(diǎn)G,過點(diǎn)A作AF⊥EG于點(diǎn)F,然后設(shè)E(x,x2-2x+1),由S△ABE=S梯形ABGF-S△BEG-S△AEF,利用二次函數(shù)的性質(zhì),即可求得△ABE的最大面積;
          (3)由平行四邊形的判定,可得當(dāng)PE=CD時(shí),四邊形PECD為平行四邊形,然后設(shè)P(x,x+1),則點(diǎn)E(x,x2-2x+1),即可得PE=(x+1)-(x2-2x+1)=-x2+3x=2,繼而可求得點(diǎn)P的坐標(biāo).
          解答:解:(1)∵拋物線y=ax2+bx+c的頂點(diǎn)為C(1,0),
          ∴設(shè)此拋物線的解析式為:y=a(x-1)2,
          ∵點(diǎn)B(0,1)在此拋物線上,
          ∴a=1,
          ∴此拋物線的解析式為:y=(x-1)2=x2-2x+1;
          ∵直線l:y=x+m交y軸于點(diǎn)B(0,1),
          ∴1=0+m,
          解得:m=1,
          ∴直線l的函數(shù)解析式為y=x+1;
          聯(lián)立得:
          y=x2-2x+1
          y=x+1
          ,
          解得:
          x=3
          y=4
          x=0
          y=1
          ,
          故點(diǎn)A的坐標(biāo)為:(3,4);

          (2)過點(diǎn)E作EG⊥y軸于點(diǎn)G,過點(diǎn)A作AF⊥EG于點(diǎn)F,
          設(shè)E(x,x2-2x+1),
          ∴EG=x,EF=3-x,BG=1-(x2-2x+1)=-x2+2x,AF=4-(x2-2x+1)=-x2+2x+3,GF=3,
          ∴S△ABE=S梯形ABGF-S△BEG-S△AEF=
          1
          2
          (BG+AF)•GF-
          1
          2
          BG•EG-
          1
          2
          EF•AF
          =
          1
          2
          ×[(-x2+2x)+(-x2+2x+3)]×3-
          1
          2
          ×(-x2+2x)×x-
          1
          2
          ×(3-x)×(-x2+2x+3)
          =-
          -3x2+9x
          2
          =-
          3
          2
          (x-
          3
          2
          2+
          27
          8

          ∴當(dāng)x=
          3
          2
          時(shí),S△ABE的最大值為:
          27
          8

          ∴△ABE的最大面積是
          27
          8
          ;

          (3)存在.
          ∵PE∥y軸,CD∥y軸,
          ∴PE∥CD,
          ∴當(dāng)PE=CD時(shí),四邊形PECD為平行四邊形,
          ∵點(diǎn)D在直線y=x+1上,且點(diǎn)D的橫坐標(biāo)為1,
          ∴點(diǎn)D(1,2),
          ∴CD=2,
          設(shè)P(x,x+1),則點(diǎn)E(x,x2-2x+1),
          ∴PE=(x+1)-(x2-2x+1)=-x2+3x=2,
          即x2-3x+2=0,
          解得:x=1或x=2,
          故點(diǎn)P的坐標(biāo)為:(2,3).
          點(diǎn)評(píng):此題考查了待定系數(shù)法求函數(shù)的解析式、函數(shù)的交點(diǎn)問題、二次函數(shù)的最值問題以及平行四邊形的判定.此題難度較大,注意掌握輔助線的作法,注意掌握輔助線的作法,注意掌握方程思想與數(shù)形結(jié)合思想的應(yīng)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),它們的橫坐標(biāo)分別為-1和3,精英家教網(wǎng)與y軸交點(diǎn)C的縱坐標(biāo)為3,△ABC的外接圓的圓心為點(diǎn)M.
          (1)求這條拋物線的解析式;
          (2)求圖象經(jīng)過M、A兩點(diǎn)的一次函數(shù)解析式;
          (3)在(1)中的拋物線上是否存在點(diǎn)P,使過P、M兩點(diǎn)的直線與△ABC的兩邊AB、BC的交點(diǎn)E、F和點(diǎn)B所組成的△BEF和△ABC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,拋物線的頂點(diǎn)為點(diǎn)D,與y軸相交于點(diǎn)A,直線y=ax+3與y軸也交于點(diǎn)A,矩形ABCO的頂點(diǎn)B在精英家教網(wǎng)此拋物線上,矩形面積為12,
          (1)求該拋物線的對(duì)稱軸;
          (2)⊙P是經(jīng)過A、B兩點(diǎn)的一個(gè)動(dòng)圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點(diǎn)的距離為4時(shí),求圓心P的坐標(biāo);
          (3)若線段DO與AB交于點(diǎn)E,以點(diǎn)D、A、E為頂點(diǎn)的三角形是否有可能與以點(diǎn)D、O、A為頂點(diǎn)的三角形相似,如果有可能,請(qǐng)求出點(diǎn)D坐標(biāo)及拋物線解析式;如果不可能,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•寧化縣質(zhì)檢)已知:如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(1-
          3
          ,0)和點(diǎn)B,將拋物線沿x軸向上翻折,頂點(diǎn)P落在點(diǎn)P′(1,3)處.
          (1)求原拋物線的解析式;
          (2)在原拋物線上,是否存在一點(diǎn),與它關(guān)于原點(diǎn)對(duì)稱的點(diǎn)也在該拋物線上?若存在,求滿足條件的點(diǎn)的坐標(biāo);若不存在,說明理由.
          (3)學(xué)校舉行班徽設(shè)計(jì)比賽,九年級(jí)(5)班的小明在解答此題時(shí)頓生靈感:過點(diǎn)P′作x軸的平行線交拋物線于C、D兩點(diǎn),將翻折后得到的新圖象在直線CD以上的部分去掉,設(shè)計(jì)成一個(gè)“W”型的班徽,“5”的拼音開頭字母為W,“W”圖案似大鵬展翅,寓意深遠(yuǎn);而且小明通過計(jì)算驚奇的發(fā)現(xiàn)這個(gè)“W”圖案的高與寬(CD)的比非常接近黃金分割比
          5
          -1
          2
          (約等于0.618).請(qǐng)你計(jì)算這個(gè)“W”圖案的高與寬的比到底是多少?(參考數(shù)據(jù):
          5
          ≈2.236
          ,
          6
          ≈2.449
          ,結(jié)果精確到0.001)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知,如圖,拋物線y=ax2-2ax+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A,B,點(diǎn)A的坐標(biāo)為(4,0).
          (1)求該拋物線的解析式;
          (2)若點(diǎn)M在拋物線上,且△ABC與△ABM的面積相等,直接寫出點(diǎn)M的坐標(biāo);
          (3)點(diǎn)Q是線段AB上的動(dòng)點(diǎn),過點(diǎn)Q作QE∥AC,交BC于點(diǎn)E,連接CQ.當(dāng)△CQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
          (4)若平行于x軸的動(dòng)直線l與線段AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請(qǐng)求出直線l的解析式;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知,如圖,拋物線y=x2+px+q與x軸相交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且OA≠OB,OA=OC,設(shè)拋物線的頂點(diǎn)為點(diǎn)P,直線PC與x軸的交點(diǎn)D恰好與點(diǎn)A關(guān)于y軸對(duì)稱.
          (1)求p、q的值.
          (2)在題中的拋物線上是否存在這樣的點(diǎn)Q,使得四邊形PAQD恰好為平行四邊形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
          (3)連接PA、AC.問:在直線PC上,是否存在這樣點(diǎn)E(不與點(diǎn)C重合),使得以P、A、E為頂點(diǎn)的三角形與△PAC相似?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案