日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,正六邊形A1B1C1D1E1F1的邊長(zhǎng)為1,它的六條對(duì)角線又圍成一個(gè)正六邊形A2B2C2D2E2F2 , 如此繼續(xù)下去,則正六邊形A4B4C4D4E4F4的面積是.

          【答案】
          【解析】解:由正六邊形的性質(zhì)得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2 , ∴B1B2= A1B1= ,
          ∴A2B2= A1B2=B1B2=
          ∵正六邊形A1B1C1D1E1F1∽正六邊形A2B2C2D2E2F2 ,
          ∴正六邊形A2B2C2D2E2F2的面積:正六邊形A1B1C1D1E1F1的面積=( 2= ,
          ∵正六邊形A1B1C1D1E1F1的面積=6× ×1× =
          ∴正六邊形A2B2C2D2E2F2的面積= × = ,
          同理:正六邊形A4B4C4D4E4F4的面積=( 3× =
          故答案為: .
          由正六邊形的性質(zhì)得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2 , 由直角三角形的性質(zhì)得出B1B2= A1B1= ,A2B2= A1B2=B1B2= ,由相似多邊形的性質(zhì)得出正六邊形A2B2C2D2E2F2的面積:正六邊形A1B1C1D1E1F1的面積= ,求出正六邊形A1B1C1D1E1F1的面積= ,得出正六邊形A2B2C2D2E2F2的面積,同理得出正六邊形A4B4C4D4E4F4的面積.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在一個(gè)不透明的口袋里有紅、黃、藍(lán)三種顏色的小球,這些球除顏色外部相同,其中有5個(gè)黃球,4個(gè)藍(lán)球.若隨機(jī)摸出一個(gè)藍(lán)球的概率為 ,則隨機(jī)摸出一個(gè)紅球的概率為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,∠ABC=2∠D,連接OA、OB、OC、AC,OB與AC相交于點(diǎn)E,若∠COB=3∠AOB,OC=2 ,則圖中陰影部分面積是(結(jié)果保留π和根號(hào))

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】1)閱讀以下內(nèi)容:

          已知實(shí)數(shù)x,y滿足x+y=2,且求k的值.

          三位同學(xué)分別提出了以下三種不同的解題思路:

          甲同學(xué):先解關(guān)于x,y的方程組,再求k的值.

          乙同學(xué):先將方程組中的兩個(gè)方程相加,再求k的值.

          丙同學(xué):先解方程組,再求k的值.

          (2)你最欣賞(1)中的哪種思路?先根據(jù)你所選的思路解答此題,再對(duì)你選擇的思路進(jìn)行簡(jiǎn)要評(píng)價(jià).

          (評(píng)價(jià)參考建議:基于觀察到題目的什么特征設(shè)計(jì)的相應(yīng)思路,如何操作才能實(shí)現(xiàn)這些思路、運(yùn)算的簡(jiǎn)潔性,以及你依此可以總結(jié)什么解題策略等等)

          請(qǐng)先在以下相應(yīng)方框內(nèi)打勾,再解答相應(yīng)題目.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,下列能判定AB∥CD的條件有( )個(gè).

          1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

          A. 1 B. 2 C. 3 D. 4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB為⊙O的內(nèi)接正多邊形的一邊,已知∠OAB=70°,則這個(gè)正多邊形的內(nèi)角和為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC,點(diǎn)O在AB上,經(jīng)過點(diǎn)A的⊙O與BC相切于點(diǎn)D,交AB于點(diǎn)E.
          (1)求證:AD平分∠BAC;
          (2)若CD=1,求圖中陰影部分的面積(結(jié)果保留π).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在RtABC中,ABC = 90°,BC = 1,AC =

          1以點(diǎn)B為旋轉(zhuǎn)中心,將ABC沿逆時(shí)針方向旋轉(zhuǎn)90°得到ABC′,請(qǐng)畫出變換后的圖形;

          2求點(diǎn)A和點(diǎn)A′之間的距離

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC是定圓O的內(nèi)接三角形,AD為△ABC的高線,AE平分∠BAC交⊙O于E,交BC于G,連OE交BC于F,連OA,在下列結(jié)論中,①CE=2EF,②△ABG∽△AEC,③∠BAO=∠DAC,④ 為常量.其中正確的有

          查看答案和解析>>

          同步練習(xí)冊(cè)答案