日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】知識準(zhǔn)備:數(shù)軸上兩點(diǎn)對應(yīng)的數(shù)分別為.則兩點(diǎn)之間的距離表示為:

          問題探究:數(shù)軸上兩點(diǎn)對應(yīng)的數(shù)分別為滿足

          直接寫出:___

          在數(shù)軸上有一點(diǎn)對應(yīng)的數(shù)為,請問:當(dāng)點(diǎn)兩點(diǎn)的距離和為時(shí),滿足什么條件?請利用數(shù)軸進(jìn)行說明(此時(shí)最小)

          拓展:當(dāng)數(shù)軸上三點(diǎn)對應(yīng)的數(shù)分別為在數(shù)軸上有一點(diǎn)對應(yīng)的數(shù)為,當(dāng)滿足什么條件時(shí),的值最小?

          應(yīng)用:國慶期間漢口江灘武漢關(guān)至長江二橋之間是觀看“70周年國慶燈光秀”的理想?yún)^(qū)域,武漢關(guān)與長江二橋相距約公里。在國慶期間,為了服務(wù)廣大市民,漢口江灘管理處在漢口江灘武漢關(guān)至長江二橋之間每隔公里安排了便民服務(wù)小組(武漢關(guān)與長江二橋不安排) ,還需要設(shè)置一個(gè)便民服務(wù)物資站,請問便民服務(wù)物資站應(yīng)該設(shè)置在什么地方,使它到各個(gè)便民服務(wù)小組的距離和最小,最小值是多少公里?便民服務(wù)物資站位置代表的數(shù)記作利用下圖直接給出結(jié)果:滿足的條件: 最小值為 公里.

          【答案】問題探究:(1; 2;拓展:當(dāng)時(shí),最小時(shí)為;應(yīng)用:;4

          【解析】

          問題探究:
          1)根據(jù)非負(fù)數(shù)的性質(zhì)可得的值;
          2)根據(jù)絕對值的幾何意義,可得當(dāng)點(diǎn)PAB之間(包括A,B兩點(diǎn)),PA點(diǎn)與PB點(diǎn)的距離之和是6,即PA+PB最小;
          拓展:點(diǎn)P在點(diǎn)A和點(diǎn)B(含點(diǎn)A和點(diǎn)B)之間,依此即可求解.
          應(yīng)用:同理根據(jù)拓展的問題,分情況即可求解.

          問題探究:
          1)∵
          ,,
          ,;
          故答案為:,
          2)如圖1

          點(diǎn)PA、B兩點(diǎn)的距離和為6時(shí),點(diǎn)PAB之間(包括AB兩點(diǎn)),即,此時(shí)PA+PB最小;
          拓展:


          點(diǎn)P表示的數(shù)為2,該最小值為12
          設(shè)PA、BC的距離和為d,
          ,
          ①當(dāng)時(shí),
          時(shí),
          ②當(dāng)時(shí),,
          時(shí),;
          ③當(dāng)時(shí),12,
          ④當(dāng)x8時(shí)18;
          綜上,當(dāng)點(diǎn)P表示的數(shù)為2時(shí),PAB、C的距離和最小,最小值為12
          應(yīng)用:
          如圖3,設(shè)便民服務(wù)物資站為點(diǎn)P,各便民服務(wù)小組分別為A,BC,D,

          設(shè)PA、B、CD的距離和為d,

          ①當(dāng)時(shí),
          時(shí),;
          ②當(dāng)時(shí),4,
          ③當(dāng)時(shí),,
          ④當(dāng)時(shí),4,
          ⑤當(dāng)時(shí),,
          當(dāng)時(shí),;
          綜上,滿足的條件:,最小值為4公里.
          故答案為:4

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】四邊形 ABCD 的對角線交于點(diǎn) E,且 AEEC,BEED,以 AD 為直徑的半圓過點(diǎn) E,圓心 O

          1)如圖①,求證:四邊形 ABCD 為菱形;

          2)如圖②,若 BC 的延長線與半圓相切于點(diǎn) F,且直徑 AD6,求AE 的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小淇在說明 直角三角形斜邊上的中線等于斜邊的一半是真命題,部分思路如下:如圖,在∠ACB內(nèi)做∠BCD=∠B,CDAB相交于點(diǎn)D…….請根據(jù)以上思路,完成證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】時(shí)代中學(xué)從學(xué)生興趣出發(fā),實(shí)施體育活動(dòng)課走班制.為了了解學(xué)生最喜歡的一種球類運(yùn)動(dòng),以便合理安排活動(dòng)場地,在全校至少喜歡一種球類(乒乓球、羽毛球、排球、籃球、足球)運(yùn)動(dòng)的1200名學(xué)生中,隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查(每人只能在這五種球類運(yùn)動(dòng)中選擇一種).調(diào)查結(jié)果統(tǒng)計(jì)如下:

          球類名稱

          乒乓球

          羽毛球

          排球

          籃球

          足球

          人數(shù)

          42

          15

          33

          解答下列問題:

          (1)這次抽樣調(diào)查中的樣本是________;

          (2)統(tǒng)計(jì)表中,________,________;

          (3)試估計(jì)上述1200名學(xué)生中最喜歡乒乓球運(yùn)動(dòng)的人數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABCBA=BC,點(diǎn)DAB延長線上一點(diǎn),DF⊥ACFBCE,

          求證:△DBE是等腰三角形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】隨著我市農(nóng)產(chǎn)品整體品牌形象勝一籌!”的推出,現(xiàn)代農(nóng)業(yè)得到了更快發(fā)展.某農(nóng)場為擴(kuò)大生產(chǎn)建設(shè)了一批新型鋼管裝配式大棚,如圖1.線段AB,BD分別表示大棚的墻高和跨度,AC表示保溫板的長.已知墻高AB2米,墻面與保溫板所成的角∠BAC=150°,在點(diǎn)D處測得A點(diǎn)、C點(diǎn)的仰角分別為9°,15.6°,如圖2.求保溫板AC的長是多少米?(精確到0.1米)

          (參考數(shù)據(jù):≈0.86,sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知拋物線軸分別交于原點(diǎn)和點(diǎn),與對稱軸交于點(diǎn).矩形的邊軸正半軸上,且,邊,與拋物線分別交于點(diǎn).當(dāng)矩形沿軸正方向平移,點(diǎn),位于對稱軸的同側(cè)時(shí),連接,此時(shí),四邊形的面積記為;點(diǎn)位于對稱軸的兩側(cè)時(shí),連接,,此時(shí)五邊形的面積記為.將點(diǎn)與點(diǎn)重合的位置作為矩形平移的起點(diǎn),設(shè)矩形平移的長度為.

          (1)求出這條拋物線的表達(dá)式;

          (2)當(dāng)時(shí),求的值;

          (3)當(dāng)矩形沿著軸的正方向平移時(shí),求關(guān)于的函數(shù)表達(dá)式,并求出為何值時(shí),有最大值,最大值是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校組織一項(xiàng)公益知識競賽,比賽規(guī)定:每個(gè)班級由2名男生、2名女生及1名班主任老師組成代表隊(duì).但參賽時(shí),每班只能有3名隊(duì)員上場參賽,班主任老師必須參加,另外2名隊(duì)員分別在2名男生和2名女生中各隨機(jī)抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊(duì),求恰好抽到由男生甲、女生丙和這位班主任一起上場參賽的概率.(請用畫樹狀圖列表列舉等方法給出分析過程)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,從邊長為a的大正方形中剪掉一個(gè)邊長為b的小正方形,將陰影部分剪下,拼成右邊的矩形,由圖形①到圖形②的變化過程能夠驗(yàn)證的一個(gè)等式是( 。

          A. a(a+b)=a2+ab B. a2﹣b2=(a+b)(a﹣b)

          C. (a+b)2=a2+2ab+b2 D. a(a﹣b)=a2﹣ab

          查看答案和解析>>

          同步練習(xí)冊答案