日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在平行四邊形ABCD中,AB=4,BC=3,∠BAD=120°,E為BC上一動點(精英家教網(wǎng)不與B重合),作EF⊥AB于F,F(xiàn)E,DC的延長線交于點G,設(shè)BE=x,△DEF的面積為S.
          (1)求用x表示S的函數(shù)表達式,并寫出x的取值范圍;
          (2)是否存在一點E,使S△DEF:SABCD=1:2?若存在,求出相應(yīng)的x;若不存在,說明理由.
          分析:(1)由四邊形ABCD為平行四邊形,得到兩組對邊平行且相等,可知AD與BC平行,由兩直線平行同旁內(nèi)角互補可知∠A和∠B互補,由∠A的度數(shù)求出∠B的度數(shù),又EF與AB垂直,由垂直定義得到∠BFE為直角,進而求出∠FEB為30°,又BE=x,根據(jù)直角三角形中30°角所對的直角邊等于斜邊的一半可表示出BF,進而利用勾股定理表示出EF,即為所求三角形的底,然后求EF邊上的高,根據(jù)題意可知DG即為EF邊上的高,下來求DG,在直角三角形CEG中,由對頂角相等可知∠CEG=∠FGB=30°,又EC=BC-BE,表示出EC,再根據(jù)直角三角形中30°角所對的直角邊等于斜邊的一半可表示出CG,根據(jù)CG+DC即可表示出DG,最后利用三角形的面積公式即可用x表示出△DEF的面積為S,再根據(jù)E為BC上一動點,且不與B重合可知x的范圍;
          (2)存在,當E與C重合時,S△DEF:SABCD=1:2,理由為:過D作BC邊上的垂線,交BC的延長線與M,DM即為平行四邊形BC邊上的高,由AB與DC平行,根據(jù)兩直線平行,同位角相等可知∠DCM=∠B=60°,又∠DMC=90°,可求出∠CDM=30°,根據(jù)直角三角形中30°角所對的直角邊等于斜邊的一半可求出CM的長,再利用勾股定理即可求出DM的長,然后利用平行四邊形的面積公式底乘以高即可求出平行四邊形ABCD的面積,又S△DEF:SABCD=1:2,可知三角形DEF的面積等于平行四邊形面積的一半,進而求出三角形DEF的面積,令第一問表示出的S等于求出的面積,列出關(guān)于x的方程,求出方程的解得到x的值,故存在.
          解答:解:(1)∵平行四邊形ABCD,
          ∴AD∥BC,
          ∴∠A+∠B=180°,
          又∵∠BAD=120°,
          ∴∠B=60°,
          又∵EF⊥AB,且AB∥DC,
          ∴∠BFG=∠EGC=90°,
          ∴∠FEB=30°,又BE=x,
          ∴BF=
          1
          2
          BE=
          1
          2
          x(直角三角形中30°角所對的直角邊等于斜邊的一半),
          根據(jù)勾股定理得:EF=
          3
          2
          x,
          在Rt△ECG中,由BC=3,DC=4,則EC=BC-BE=3-x,
          ∵∠CEG=∠FEB=30°,
          ∴CG=
          1
          2
          EC=
          1
          2
          (3-x),
          ∴DG=DC+CG=4+
          1
          2
          (3-x),
          則△DEF的面積為S=
          1
          2
          EF•DG=
          1
          2
          ×
          3
          2
          x×[4+
          1
          2
          (3-x)]=-
          3
          8
          x2+
          11
          3
          8
          x(0<x≤3);
          精英家教網(wǎng)
          (2)存在,當E與C重合時,S△DEF:SABCD=1:2,理由如下:
          過D作平行四邊形BC邊上的高,角BC的延長線與點M,如圖所示,
          ∵平行四邊形ABCD,
          ∴AB∥DC,
          ∴∠DCM=∠B=60°,
          在Rt△DCM中,DC=4,∠CDM=30°,
          ∴CM=
          1
          2
          DC=2,
          根據(jù)勾股定理求得:DM=2
          3
          ,
          ∴平行四邊形ABCD的面積為BC•DM=3×2
          3
          =6
          3
          ,
          由S△DEF:SABCD=1:2,得到S△DEF=
          1
          2
          SABCD=3
          3
          ,
          根據(jù)第一問可知:S=-
          3
          8
          x2+
          11
          3
          8
          x=3
          3
          ,
          整理得:(x-3)(x-8)=0,
          解得:x=3或x=8(舍去).
          則存在一點E,當E與C重合時,S△DEF:SABCD=1:2,此時x=3.
          點評:此題考查了平行四邊形的性質(zhì),直角三角形的性質(zhì),以及一元二次方程的應(yīng)用,利用了函數(shù)及方程的思想.由題意得出DG為三角形DEF中EF邊上的高是第一問的突破點,探究存在性問題常先假設(shè)結(jié)論成立,看是否導(dǎo)致矛盾,還是達到與已知條件相符,從而確定探究的結(jié)論是否正確,這種方法稱為“假設(shè)驗證法”,本題第二問利用的是此方法.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點O,則圖中共有
          9
          個平行四邊形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點E,∠ADC的平分線交AB于點F,證明:四邊形DFBE是平行四邊形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點M是邊AD上一點,且DM:AD=1:3.點E、F分別從A、C同時出發(fā),以1厘米/秒的速度分別沿AB、CB向點B運動(當點F運動到點B時,點E隨之停止運動),EM、CD精英家教網(wǎng)的延長線交于點P,F(xiàn)P交AD于點Q.設(shè)運動時間為x秒,線段PC的長為y厘米.
          (1)求y與x之間函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
          (2)當x為何值時,PF⊥AD?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
          2
          ,AO=
          3
          OB=
          5
          ,則下列結(jié)論中不正確的是(  )
          A、AC⊥BD
          B、四邊形ABCD是菱形
          C、△ABO≌△CBO
          D、AC=BD

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為
          4cm
          4cm

          查看答案和解析>>

          同步練習(xí)冊答案