日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:如圖,中,,以為直徑的⊙O交于點(diǎn),
          于點(diǎn)
          (1)求證:是⊙O的切線;
          (2)若,求的值.

          (1)見(jiàn)解析;(2)

          解析試題分析:(1)由OB=OP可得∠B=∠OPB,由可得∠B=∠C,即可證得OP∥AC,再結(jié)合即可證得結(jié)論;
          (2)連接AP,根據(jù)直徑所對(duì)是圓周角是直角可得AP⊥BC,再根據(jù)等腰三角形的三線合一的性質(zhì)可得BP=CP,最后利用含30°角的直角三角形的性質(zhì)結(jié)合勾股定理即可求得結(jié)果。
          (1)∵OB=OP
          ∴∠B=∠OPB 

          ∴∠B=∠C 
          ∴∠C=∠OPB
          ∴OP∥AC 
          ∴∠OPD=∠CDP=90°
          ∵OP是半徑
          是⊙O的切線;
          (2)連接AP

          ∵AB是直徑
          ∴AP⊥BC

          ∴BP=CP,∠B=∠C
          ∵∠CAB=120°
          ∴∠B=∠C=30°
          ∴在Rt△ABP中,
          在Rt△ABP中,
          .
          考點(diǎn):本題考查的是切線的判定及性質(zhì),勾股定理
          點(diǎn)評(píng):解答本題的關(guān)鍵是熟記要證某線是圓的切線,已知此線過(guò)圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),再證垂直即可.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)中新網(wǎng)2010年8月23日電.中央氣象臺(tái)消息,今日8時(shí),南海熱帶低壓加強(qiáng)為今年第5號(hào)熱帶風(fēng)暴“蒲公英”,逐漸向海南島南部近海靠近.已知,如圖,一艘輪船以20海里/時(shí)的速度由西向東航行,在途中接到臺(tái)風(fēng)警報(bào),臺(tái)風(fēng)中心正以40海里/時(shí)的速度由南向北移動(dòng),距臺(tái)風(fēng)中心20
          10
          海里的圓形區(qū)域內(nèi)(包括邊界)都屬于臺(tái)風(fēng)區(qū),當(dāng)輪船到達(dá)A處時(shí),測(cè)得臺(tái)風(fēng)中心移動(dòng)到位于點(diǎn)A正南方的B處,且AB=100海里.
          (1)若這艘輪船自A處按原速繼續(xù)航行,在途中會(huì)不會(huì)遇到臺(tái)風(fēng)?若會(huì),試求出輪船最初遇到臺(tái)風(fēng)的時(shí)間;若不會(huì),請(qǐng)說(shuō)明理由.
          (2)現(xiàn)輪船自A處立即提高速度,向位于東偏北30°方向,相距60海里的D港駛?cè)ィ疄槭馆喆谂_(tái)風(fēng)到來(lái)之前到達(dá)D港,則船速至少應(yīng)提高多少(提高的船速取整數(shù),
          13
          ≈3.6

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:如圖△ABC中,∠ACB=90°,以AC為直徑的⊙O交AB于D,過(guò)D作⊙O的切線交BC于點(diǎn)E,EF⊥精英家教網(wǎng)AB,垂足為F.
          (1)求證:DE=
          12
          BC;
          (2)若AC=6,BC=8,求S△ACD:S△EDF的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建龍巖永定仙師中學(xué)九年級(jí)上第17周周末測(cè)試數(shù)學(xué)卷(解析版) 題型:解答題

          已知:如圖△ABC中,∠ACB=90°,點(diǎn)E是邊BC上一點(diǎn),過(guò)點(diǎn)E作FE⊥BC(垂足為E)交AB于點(diǎn)F,且EF=AF,以點(diǎn)E為圓心,EC長(zhǎng)為半徑作⊙E,交BC于點(diǎn)D.

          (1)求證:直線AB是⊙E的切線;

          (2)設(shè)直線AB和⊙E的公共點(diǎn)為G,AC=8,EF=5,連接EG,求⊙E的半徑r.

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2001年全國(guó)中考數(shù)學(xué)試題匯編《圓》(06)(解析版) 題型:解答題

          (2001•烏魯木齊)已知:如圖△ABC中,∠ACB=90°,以AC為直徑的⊙O交AB于D,過(guò)D作⊙O的切線交BC于點(diǎn)E,EF⊥AB,垂足為F.
          (1)求證:DE=BC;
          (2)若AC=6,BC=8,求S△ACD:S△EDF的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2001年新疆烏魯木齊市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2001•烏魯木齊)已知:如圖△ABC中,∠ACB=90°,以AC為直徑的⊙O交AB于D,過(guò)D作⊙O的切線交BC于點(diǎn)E,EF⊥AB,垂足為F.
          (1)求證:DE=BC;
          (2)若AC=6,BC=8,求S△ACD:S△EDF的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案