日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2006•常德)把兩塊全等的直角三角形ABC和DEF疊放在一起,使三角板DEF的銳角頂點D與三角板ABC的斜邊中點O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不動,讓三角板DEF繞點O旋轉(zhuǎn),設(shè)射線DE與射線AB相交于點P,射線DF與線段BC相交于點Q.
          (1)如圖1,當(dāng)射線DF經(jīng)過點B,即點Q與點B重合時,易證△APD∽△CDQ.此時,AP•CQ=______;
          (2)將三角板DEF由圖1所示的位置繞點O沿逆時針方向旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α.其中0°<α<90°,問AP•CQ的值是否改變?說明你的理由;
          (3)在(2)的條件下,設(shè)CQ=x,兩塊三角板重疊面積為y,求y與x的函數(shù)關(guān)系式.(圖2,圖3供解題用)

          【答案】分析:(1)可通過證△APD∽△CDQ來求解.
          (2)不會改變,關(guān)鍵是還是證△APD∽△CDQ,已知了一組45°角,關(guān)鍵是證(1)中的∠APD=∠QDC,由于圖2由圖1旋轉(zhuǎn)而得,根據(jù)旋轉(zhuǎn)的性質(zhì)可設(shè)旋轉(zhuǎn)角為α,那么∠APD=90°-α,∠CDQ=90°-α,因此兩角相等.由此可證得兩三角形相似.因此結(jié)論不變.
          (3)本題分類兩種情況進(jìn)行討論:①當(dāng)0°<α<45°時②當(dāng)45°≤α<90°時.
          解答:解:(1)∵∠A=∠C=45°,∠APD=∠QDC=90°,
          ∴△APD∽△CDQ.
          ∴AP:CD=AD:CQ.
          ∴即AP×CQ=AD×CD,
          ∵AB=BC=4,
          ∴斜邊中點為O,
          ∴AP=PD=2,
          ∴AP×CQ=2×4=8;
          故答案為:8.

          (2)AP•CQ的值不會改變.
          理由如下:
          ∵在△APD與△CDQ中,∠A=∠C=45°,
          ∠APD=180°-45°-(45°+α)=90°-α,
          ∠CDQ=90°-α,
          ∴∠APD=∠CDQ.
          ∴△APD∽△CDQ.

          ∴AP•CQ=AD•CD=AD2=(AC)2=8.

          (3)情形1:當(dāng)0°<α<45°時,2<CQ<4,即2<x<4,
          此時兩三角板重疊部分為四邊形DPBQ,過D作DG⊥AP于G,DN⊥BC于N,
          ∴DG=DN=2
          由(2)知:AP•CQ=8得AP=
          于是y=AB•BC-CQ•DN-AP•DG
          =8-x-(2<x<4)
          情形2:當(dāng)45°≤α<90°時,0<CQ≤2時,即0<x≤2,此時兩三角板重疊部分為△DMQ,
          由于AP=,PB=-4,易證:△PBM∽△DNM,
          解得
          ∴MQ=4-BM-CQ=4-x-
          于是y=MQ•DN=4-x-(0<x≤2).
          綜上所述,當(dāng)2<x<4時,y=8-x-
          當(dāng)0<x≤2時,y=4-x-(或y=).
          點評:本題主要考查了相似三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)以及二次函數(shù)等知識的綜合應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2009年山東省濟(jì)南市省實驗中學(xué)中考數(shù)學(xué)測試試卷(2)(解析版) 題型:解答題

          (2006•常德)把兩塊全等的直角三角形ABC和DEF疊放在一起,使三角板DEF的銳角頂點D與三角板ABC的斜邊中點O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不動,讓三角板DEF繞點O旋轉(zhuǎn),設(shè)射線DE與射線AB相交于點P,射線DF與線段BC相交于點Q.
          (1)如圖1,當(dāng)射線DF經(jīng)過點B,即點Q與點B重合時,易證△APD∽△CDQ.此時,AP•CQ=______;
          (2)將三角板DEF由圖1所示的位置繞點O沿逆時針方向旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α.其中0°<α<90°,問AP•CQ的值是否改變?說明你的理由;
          (3)在(2)的條件下,設(shè)CQ=x,兩塊三角板重疊面積為y,求y與x的函數(shù)關(guān)系式.(圖2,圖3供解題用)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年高中段自主招生科學(xué)素養(yǎng)模擬卷(數(shù)學(xué)部分)(解析版) 題型:解答題

          (2006•常德)把兩塊全等的直角三角形ABC和DEF疊放在一起,使三角板DEF的銳角頂點D與三角板ABC的斜邊中點O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不動,讓三角板DEF繞點O旋轉(zhuǎn),設(shè)射線DE與射線AB相交于點P,射線DF與線段BC相交于點Q.
          (1)如圖1,當(dāng)射線DF經(jīng)過點B,即點Q與點B重合時,易證△APD∽△CDQ.此時,AP•CQ=______;
          (2)將三角板DEF由圖1所示的位置繞點O沿逆時針方向旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α.其中0°<α<90°,問AP•CQ的值是否改變?說明你的理由;
          (3)在(2)的條件下,設(shè)CQ=x,兩塊三角板重疊面積為y,求y與x的函數(shù)關(guān)系式.(圖2,圖3供解題用)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2006年湖南省常德市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2006•常德)把兩塊全等的直角三角形ABC和DEF疊放在一起,使三角板DEF的銳角頂點D與三角板ABC的斜邊中點O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不動,讓三角板DEF繞點O旋轉(zhuǎn),設(shè)射線DE與射線AB相交于點P,射線DF與線段BC相交于點Q.
          (1)如圖1,當(dāng)射線DF經(jīng)過點B,即點Q與點B重合時,易證△APD∽△CDQ.此時,AP•CQ=______;
          (2)將三角板DEF由圖1所示的位置繞點O沿逆時針方向旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α.其中0°<α<90°,問AP•CQ的值是否改變?說明你的理由;
          (3)在(2)的條件下,設(shè)CQ=x,兩塊三角板重疊面積為y,求y與x的函數(shù)關(guān)系式.(圖2,圖3供解題用)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2006年湖南省常德市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2006•常德)有2個信封,每個信封內(nèi)各裝有四張卡片,其中一個信封內(nèi)的四張卡片上分別寫有1、2、3、4四個數(shù),另一個信封內(nèi)的四張卡片分別寫有5、6、7、8四個數(shù),甲、乙兩人商定了一個游戲,規(guī)則是:從這兩個信封中各隨機(jī)抽取一張卡片,然后把卡片上的兩個數(shù)相乘,如果得到的積大于20,則甲獲勝,否則乙獲勝.
          (1)請你通過列表(或畫樹狀圖)計算甲獲勝的概率.
          (2)你認(rèn)為這個游戲公平嗎?為什么?

          查看答案和解析>>

          同步練習(xí)冊答案