日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,拋物線y=ax2+bx+c經(jīng)過(guò)A(1,0)、B(4,0)、C(0,3)三點(diǎn).

          (1)求拋物線的解析式;

          (2)如圖①,在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得四邊形PAOC的周長(zhǎng)最。咳舸嬖,求出四邊形PAOC周長(zhǎng)的最小值;若不存在,請(qǐng)說(shuō)明理由.

          (3)如圖②,點(diǎn)Q是線段OB上一動(dòng)點(diǎn),連接BC,在線段BC上是否存在這樣的點(diǎn)M,使CQM為等腰三角形且BQM為直角三角形?若存在,求點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          【答案】(1)y=x2x+3(2)9(3))或(,

          【解析】

          試題分析:(1)把點(diǎn)A(1,0)、B(4,0)、C(0,3)三點(diǎn)的坐標(biāo)代入函數(shù)解析式,利用待定系數(shù)法求解;

          (2)A、B關(guān)于對(duì)稱軸對(duì)稱,連接BC,則BC與對(duì)稱軸的交點(diǎn)即為所求的點(diǎn)P,此時(shí)PA+PC=BC,四邊形PAOC的周長(zhǎng)最小值為:OC+OA+BC;根據(jù)勾股定理求得BC,即可求得;

          (3)分兩種情況分別討論,即可求得.

          試題解析:(1)根據(jù)題意設(shè)拋物線的解析式為y=a(x﹣1)(x﹣4),

          代入C(0,3)得3=4a,

          解得a=,

          y=(x﹣1)(x﹣4)=x2x+3,

          所以,拋物線的解析式為y=x2x+3.

          (2)A、B關(guān)于對(duì)稱軸對(duì)稱,如圖1,連接BC,

          BC與對(duì)稱軸的交點(diǎn)即為所求的點(diǎn)P,此時(shí)PA+PC=BC,

          四邊形PAOC的周長(zhǎng)最小值為:OC+OA+BC,

          A(1,0)、B(4,0)、C(0,3),

          OA=1,OC=3,BC==5,

          OC+OA+BC=1+3+5=9;

          在拋物線的對(duì)稱軸上存在點(diǎn)P,使得四邊形PAOC的周長(zhǎng)最小,四邊形PAOC周長(zhǎng)的最小值為9.

          (3)B(4,0)、C(0,3),

          直線BC的解析式為y=﹣x+3,

          ①當(dāng)BQM=90°時(shí),如圖2,設(shè)M(a,b),

          ∵∠CMQ90°,

          只能CM=MQ=b,

          MQy軸,

          ∴△MQB∽△COB,

          ,

          ,解得b=,代入y=﹣x+3得, =﹣a+3,解得a=,

          M();

          ②當(dāng)QMB=90°時(shí),如圖3,

          ∵∠CMQ=90°,

          只能CM=MQ,

          設(shè)CM=MQ=m,

          BM=5﹣m,

          ∵∠BMQ=COB=90°,MBQ=OBC,

          ∴△BMQ∽△BOC,

          ,解得m=,

          作MNOB,

          ,即

          MN=,CN=

          ON=OC﹣CN=3﹣=,

          M(,),

          綜上,在線段BC上存在這樣的點(diǎn)M,使CQM為等腰三角形且BQM為直角三角形,點(diǎn)M的坐標(biāo)為(,)或().

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】長(zhǎng)方形的一邊長(zhǎng)等于3m+2n,其鄰邊長(zhǎng)比它長(zhǎng)m-n,則這個(gè)長(zhǎng)方形的周長(zhǎng)是(  )

          A. 14m+6n B. 7m+3n

          C. 4m+n D. 8m+2n

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】計(jì)算(﹣1)×(﹣2)的結(jié)果是______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在ABC中,ABAC10,點(diǎn)D是邊BC上一動(dòng)點(diǎn)(不與B,C重合),ADEBα,DEAC于點(diǎn)E,且cosα.下列結(jié)論:①△ADE∽△ACD;當(dāng)BD6時(shí),ABDDCE全等;③△DCE為直角三角形時(shí),BD8;0CE≤6.4.其中正確的結(jié)論是______________.(填序號(hào))

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,甲、乙分別是4等分、3等分的兩個(gè)圓轉(zhuǎn)盤,指針固定,轉(zhuǎn)盤轉(zhuǎn)動(dòng)停止后,指針指向某一數(shù)字.

          (1)直接寫出轉(zhuǎn)動(dòng)甲盤停止后指針指向數(shù)字“1”的概率;

          (2)小華和小明利用這兩個(gè)轉(zhuǎn)盤做游戲,兩人分別同時(shí)轉(zhuǎn)動(dòng)甲、乙兩個(gè)轉(zhuǎn)盤,停止后,指針各指向一個(gè)數(shù)字,若兩數(shù)字之積為非負(fù)數(shù)則小華勝;否則,小明勝.你認(rèn)為這個(gè)游戲公平嗎?請(qǐng)你利用列舉法說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知直線y=﹣x+3分別交x軸、y軸于點(diǎn)A、B,P是拋物線y=﹣x2+2x+5上的一個(gè)動(dòng)點(diǎn),其橫坐標(biāo)為a,過(guò)點(diǎn)P且平行于y軸的直線交直線y=﹣x+3于點(diǎn)Q,則當(dāng)PQ=BQ時(shí),a的值是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,ABC的頂點(diǎn)坐標(biāo)是A(﹣7,1),B(1,1),C(1,7).線段DE的端點(diǎn)坐標(biāo)是D(7,﹣1),E(﹣1,﹣7).

          (1)試說(shuō)明如何平移線段AC,使其與線段ED重合;

          (2)將ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn),使AC的對(duì)應(yīng)邊為DE,請(qǐng)直接寫出點(diǎn)B的對(duì)應(yīng)點(diǎn)F的坐標(biāo);

          (3)畫出(2)中的DEF,并和ABC同時(shí)繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的圖形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知O為AD上一點(diǎn),∠AOC與∠AOB互補(bǔ),OM,ON分別為∠AOC,∠AOB的平分線,若∠MON=40°,試求∠AOC與∠AOB的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,某建筑工程隊(duì)利用一面墻(墻的長(zhǎng)度不限),用40米長(zhǎng)的籬笆圍成一個(gè)長(zhǎng)方形的倉(cāng)庫(kù).

          (1)求長(zhǎng)方形的面積是150平方米,求出長(zhǎng)方形兩鄰邊的長(zhǎng);

          (2)能否圍成面積220平方米的長(zhǎng)方形?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案