日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,ABC是邊長為4cm的等邊三角形,邊AB在射線OM上,且OA=6cm,點D從點O出發(fā),沿OM的方向以1cm/s的速度運動,當(dāng)D不與點A重合時,將ACD繞點C逆時針方向旋轉(zhuǎn)60°得到BCE,連接DE

          1)求證:CDE是等邊三角形(下列圖形中任選其一進(jìn)行證明);

          2)如圖2,當(dāng)點D在射線OM上運動時,是否存在以DE,B為頂點的三角形是直角三角形?若存在,求出運動時間t的值;若不存在,請說明理由.

          【答案】(1)見解析;(2) 存在,當(dāng)t=214s時,以D、E、B為頂點的三角形是直角三角形.

          【解析】

          1)由旋轉(zhuǎn)的性質(zhì)可得CD=CE,∠DCA=ECB,由等邊三角形的判定可得結(jié)論;

          2)分四種情況,由旋轉(zhuǎn)的性質(zhì)和直角三角形的性質(zhì)可求解.

          (1)證明:∵將△ACD繞點C逆時針方向旋轉(zhuǎn)60°得到△BCE

          ∴∠DCE=60°,DC=EC,

          ∴△CDE是等邊三角形;

          (2)解:存在,

          ①當(dāng)0t6s時,由旋轉(zhuǎn)可知,,,

          ,由(1)可知,△CDE是等邊三角形,

          ,

          ,

          ,

          ,

          ,

          ,

          OD=OADA=64=2,

          t=2÷1=2s;

          ②當(dāng)6t10s時,由∠DBE=120°90°

          ∴此時不存在;

          t = 10s時,點D與點B重合,

          ∴此時不存在;

          當(dāng)t10s時,由旋轉(zhuǎn)的性質(zhì)可知, CBE=60°

          又由(1)知∠CDE=60°,

          ∴∠BDE=CDE+BDC=60°+BDC

          而∠BDC,

          ∴∠BDE60°,

          ∴只能∠BDE=90°

          從而∠BCD=30°,

          BD=BC=4cm,

          OD=14cm,

          t=14÷1=14s;

          綜上所述:當(dāng)t=214s時,以D、EB為頂點的三角形是直角三角形.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,EAC邊上的一點,且AE=AB∠BAC=2∠CBE,以AB為直徑作⊙OAC于點D,交BE于點F

          1)求證:BC⊙O的切線;

          2)若AB=8,BC=6,求DE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△CBD中,CDBD,CDBDBE平分∠CBACD于點F,CEBE垂足是E,CE的延長線與BD交于點A

          1)求證:BFAC;

          2)求證:BEAC的中垂線;

          3)若BD2,求DF的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,ABC中,∠ACB90°,ACBC,以AC為邊在同一平面內(nèi)作等邊ACD,連接BD,則∠ADB______________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ADBCDBEACF,BEADFBFAC,

          1)求證:FDCD;

          2)連DE,求證:ED平分∠BEC;

          3)在(2)條件下,點PAC上,連BP、DP,BPADQ, BP平分∠EBC,∠BPDBFD,APQ的面積為4,求線段PD的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】墊球是排球隊常規(guī)訓(xùn)練的重要項目之一,下列圖表中的數(shù)據(jù)是運動員甲、乙、丙三人每人10次墊球測試的成績,測試規(guī)則為每次連續(xù)接球10個,每墊球到位1個記1分,已知運動員甲測試成績的中位數(shù)和眾數(shù)都是7

          運動員甲測試成績統(tǒng)計表

          測試序號

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          成績(分)

          7

          6

          8

          7

          6

          8

          6

          8

          1)填空:______;______

          2)要從他們?nèi)酥羞x擇一位墊球較為穩(wěn)定的接球能手,你認(rèn)為選誰更合適?為什么?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,點E為正方形ABCD的邊AB上一點,EFEC,且EF=EC,連接AF.過點FFN垂直于BA的延長線于點N

          1)求∠EAF的度數(shù);

          2)如圖2,連接FCBDM,交ADN.猜想BDAF,DM三條線段的等量關(guān)系,并證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直角梯形ABCD中,ADBC,B=90度,AC將梯形分成兩個三角形,其中ACD是周長為18cm的等邊三角形,則該梯形的中位線的長是(  )

          A. 9cm B. 12cm C. cm D. 18cm

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平行四邊形ABCD中,EAD上一點,AE=AB,過點E作直線EF,在EF上取一點G,使得∠EGB=EAB,連接AG

          1)如圖①,當(dāng)EFAB相交時,若∠EAB=60°,求證:EG=AG+BG

          2)如圖②,當(dāng)EFCD相交時,且∠EAB=90°,請你寫出線段EG、AGBG之間的數(shù)量關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊答案