日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A,E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDEADBE交于點(diǎn)O,ADBC交于點(diǎn)P,BECD交于點(diǎn)Q,連接PQ.以下五個(gè)結(jié)論:①ADBE;②PQAE;③APBQ;④DEDP;⑤∠AOE120°,其中正確結(jié)論有_____;(填序號(hào)).

          【答案】①②③⑤

          【解析】

          ①由于△ABC和△CDE是等邊三角形,可知AC=BC,CD=CE,∠ACB=DCE=60°,從而證出△ACD≌△BCE,可推知AD=BE;
          ②由△ACD≌△BCE得∠CBE=DAC,加之∠ACB=DCE=60°,AC=BC,得到△CQB≌△CPAASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=DCE,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,可知②正確;
          ③根據(jù)②△CQB≌△CPAASA),可知③正確;
          ④根據(jù)∠DQE=ECQ+CEQ=60°+CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④錯(cuò)誤;
          ⑤利用等邊三角形的性質(zhì),BCDE,再根據(jù)平行線的性質(zhì)得到∠CBE=DEO,于是∠AOB=DAC+BEC=BEC+DEO=DEC=60°,即∠AOE=180°-60°=120°可知⑤正確.

          ∵等邊ABC和等邊CDE
          AC=BC,CD=CE,∠ACB=DCE=60°,
          ∴∠ACB+BCD=DCE+BCD,即∠ACD=BCE
          ∴△ACD≌△BCESAS),
          AD=BE,
          ∴①正確,
          ∵△ACD≌△BCE
          ∴∠CBE=DAC,
          又∵∠ACB=DCE=60°,
          ∴∠BCD=60°,即∠ACP=BCQ,
          又∵AC=BC,
          ∴△CQB≌△CPAASA),
          CP=CQ
          又∵∠PCQ=60°可知PCQ為等邊三角形,
          ∴∠PQC=DCE=60°
          PQAE②正確,
          ∵△CQB≌△CPA
          AP=BQ③正確,
          AD=BE,AP=BQ,
          AD-AP=BE-BQ
          DP=QE,
          ∵∠DQE=ECQ+CEQ=60°+CEQ,∠CDE=60°,
          ∴∠DQECDE,故④錯(cuò)誤;
          ∵∠ACB=DCE=60°
          ∴∠BCD=60°,
          ∵等邊DCE,
          EDC=60°=BCD
          BCDE,
          ∴∠CBE=DEO,
          ∴∠AOB=DAC+BEC=BEC+DEO=DEC=60°,

          ∴∠AOE=180°-60°=120°
          ∴⑤正確.
          故正確的有:①②③⑤.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,矩形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)BD上,BE=DF.

          (1)求證:AE=CF;

          (2)若AB=6,∠COD=60°,求矩形ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在△ABC中,∠ACB=90°AC=BC,AEBC邊上的中線,過CAE的垂線CF,垂足為F,過BBDBCCF的延長(zhǎng)線于點(diǎn)D

          1)試說(shuō)明:AE=CD;

          2AC=12cm,求BD的長(zhǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=kx+4mm0)的圖象經(jīng)過點(diǎn)Bp,2m),其中m0

          1)若m=1,k=﹣1,求點(diǎn)B的坐標(biāo)

          2)已知點(diǎn)Am,0),若直線y=kx+4mx軸交于點(diǎn)Cn,0),n+2p=4m,試判斷線段AB上是否存在一點(diǎn)N,使得點(diǎn)N到坐標(biāo)原點(diǎn)O與到點(diǎn)C的距離之和等于線段OB的長(zhǎng),并說(shuō)明理由

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】中,,,點(diǎn)為斜邊的中點(diǎn),邊一動(dòng)點(diǎn),沿著所在的直線對(duì)折得到.若重合部分的面積為的面積一半,此時(shí)_________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),在矩形中,兩邊、分別在軸和軸上,且點(diǎn)滿足:

          1)求點(diǎn)的坐標(biāo)(___,_____);

          2)若過點(diǎn)的直線與矩形邊交于點(diǎn),且將矩形的面積分為兩部分,

          ①求直線的解析式;

          ②在直線確定一點(diǎn),使得的面積等于矩形的面積,求點(diǎn)的坐標(biāo);

          3在線段上,,在坐標(biāo)軸上,為(2)中直線上一動(dòng)點(diǎn),若四點(diǎn)、、構(gòu)成平行四邊形,直接寫出的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了全面推進(jìn)素質(zhì)教育,增強(qiáng)學(xué)生體質(zhì),豐富校園文化生活,高新區(qū)某校將舉行春季特色運(yùn)動(dòng)會(huì),需購(gòu)買AB兩種獎(jiǎng)品.經(jīng)市場(chǎng)調(diào)查,若購(gòu)買A種獎(jiǎng)品3件和B種獎(jiǎng)品2件,共需60元;若購(gòu)買A種獎(jiǎng)品1件和B種獎(jiǎng)品3件,共需55元.

          (1)AB兩種獎(jiǎng)品的單價(jià)各是多少元;

          (2)運(yùn)動(dòng)會(huì)組委會(huì)計(jì)劃購(gòu)買A、B兩種獎(jiǎng)品共100件,購(gòu)買費(fèi)用不超過1160元,且A種獎(jiǎng)品的數(shù)量不大于B種獎(jiǎng)品數(shù)量的3倍,運(yùn)動(dòng)會(huì)組委會(huì)共有幾種購(gòu)買方案?

          (3)在第(2)問的條件下,設(shè)計(jì)出購(gòu)買獎(jiǎng)品總費(fèi)用最少的方案,并求出最小總費(fèi)用.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如果一個(gè)正整數(shù)能表示為兩個(gè)連續(xù)偶數(shù)的平方差,那么稱這個(gè)正整數(shù)為“奇巧數(shù)”,如12=,20=28=,……,因此12,2028這三個(gè)數(shù)都是奇巧數(shù)。

          152,72都是奇巧數(shù)嗎?為什么?

          2)設(shè)兩個(gè)連續(xù)偶數(shù)為2n2n+2(其中n為正整數(shù)),由這兩個(gè)連續(xù)偶數(shù)構(gòu)造的奇巧數(shù)是8的倍數(shù)嗎?為什么?

          3)研究發(fā)現(xiàn):任意兩個(gè)連續(xù)“奇巧數(shù)”之差是同一個(gè)數(shù),請(qǐng)給出驗(yàn)證。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,圓E是三角形ABC的外接圓, BAC=45°,AOBCO,且BO=2,CO=3,分別以BC、AO所在直線建立x.

          1)求三角形ABC的外接圓直徑;

          2)求過ABC三點(diǎn)的拋物線的解析式;

          3)設(shè)P是(2)中拋物線上的一個(gè)動(dòng)點(diǎn),且三角形AOP為直角三角形,則這樣的點(diǎn)P有幾個(gè)?(只需寫出個(gè)數(shù),無(wú)需解答過程)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案