日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,正方形ABCD的邊長為4,延長CB至M,使BM=2,連接AM,BN⊥AM于N,O是AC、BD的交點(diǎn),連接ON,則ON的長為

          【答案】
          【解析】解:∵AB=4,BM=2,
          ∴AM= =2 ,
          ∵∠ABM=90°,BN⊥AM,
          ∴△ABN∽△BNM∽△AMB,
          ∴AB2=AN×AM,BM2=MN×AM,
          ∴AN= ,MN= ,
          ∵AB=4,CD=4,
          ∴AC=4
          ∴AO=2 ,
          = = ,且∠CAM=∠NAO
          ∴△AON∽△AMC,
          = ,即 = ,
          ∴ON=
          所以答案是:

          【考點(diǎn)精析】掌握勾股定理的概念和正方形的性質(zhì)是解答本題的根本,需要知道直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某汽車交易市場為了解二手轎車的交易情況,將本市場去年成交的二手轎車的全部數(shù)據(jù),以二手轎車交易前的使用時(shí)間為標(biāo)準(zhǔn)分為A、B、C、D、E五類,并根據(jù)這些數(shù)據(jù)由甲,乙兩人分別繪制了下面的兩幅統(tǒng)計(jì)圖(圖都不完整).

          請根據(jù)以上信息,解答下列問題:

          (1)該汽車交易市場去年共交易二手轎車   輛.

          (2)把這幅條形統(tǒng)計(jì)圖補(bǔ)充完整.(畫圖后請標(biāo)注相應(yīng)的數(shù)據(jù))

          (3)在扇形統(tǒng)計(jì)圖中,D類二手轎車交易輛數(shù)所對應(yīng)扇形的圓心角為   度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】進(jìn)入冬季,我市空氣質(zhì)量下降,多次出現(xiàn)霧霾天氣.商場根據(jù)市民健康需要,代理銷售一種防塵口罩,進(jìn)貨價(jià)為20元/包,經(jīng)市場銷售發(fā)現(xiàn):銷售單價(jià)為30元/包時(shí),每周可售出200包,每漲價(jià)1元,就少售出5包.若供貨廠家規(guī)定市場價(jià)不得低于30元/包,且商場每周完成不少于150包的銷售任務(wù).
          (1)試確定周銷售量y(包)與售價(jià)x(元/包)之間的函數(shù)關(guān)系式;
          (2)試確定商場每周銷售這種防塵口罩所獲得的利潤w(元)與售價(jià)x(元/包)之間的函數(shù)關(guān)系式,并直接寫出售價(jià)x的范圍;
          (3)當(dāng)售價(jià)x(元/包)定為多少元時(shí),商場每周銷售這種防塵口罩所獲得的利潤w(元)最大?最大利潤是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應(yīng)值如表

          x

          ﹣1

          0

          1

          3

          y

          ﹣1

          3

          5

          3

          下列結(jié)論:
          ①ac<0;
          ②當(dāng)x>1時(shí),y的值隨x值的增大而減小.
          ③3是方程ax2+(b﹣1)x+c=0的一個(gè)根;
          ④當(dāng)﹣1<x<3時(shí),ax2+(b﹣1)x+c>0.
          其中正確的結(jié)論是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖①,在平面直角坐標(biāo)系中,拋物線y=x22mx+m2+m的頂點(diǎn)為A,與y軸交于點(diǎn)B.當(dāng)拋物線不經(jīng)過坐標(biāo)原點(diǎn)時(shí),分別作點(diǎn)AB關(guān)于原點(diǎn)的對稱點(diǎn)C、D,連結(jié)AB、BCCD、DA

          1)分別用含有m的代數(shù)式表示點(diǎn)A、B的坐標(biāo).

          2)判斷點(diǎn)B能否落在y軸負(fù)半軸上,并說明理由.

          3)連結(jié)AC,設(shè)l=AC+BD,求lm之間的函數(shù)關(guān)系式.

          4)過點(diǎn)Ay軸的垂線,交y軸于點(diǎn)P,以AP為邊作正方形APMN,MNAP上方,如圖②,當(dāng)正方形APMN與四邊形ABCD重疊部分圖形為四邊形時(shí),直接寫出m的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在出行中,主動(dòng)采用能降低二氧化碳排放量的交通方式,謂之“低碳出行”.明明一家積極響應(yīng)政府“綠色山城,低碳出行”的號(hào)召,今年2月﹣5月明明一家減少了駕車出行,他們將2月﹣5月駕車行駛的里程統(tǒng)計(jì)后繪制成以下兩幅不完整的統(tǒng)計(jì)圖:

          (1)扇形統(tǒng)計(jì)圖中x= , 并補(bǔ)全折線統(tǒng)計(jì)圖;
          (2)某中學(xué)也積極參與“綠色山城,低碳出行”活動(dòng)中,決定從4名廣播社骨干成員中(其中兩名男生,兩名女生)選拔兩名同學(xué)去演講宣傳,請用畫樹形圖或列表的方法求所選出的兩名同學(xué)恰好是一名男生一名女生的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,矩形ABCD中,AB=6,∠DBC=30°,DM平分∠BDC交BC于M,△EFG中,∠F=90°,GF= ,∠E=30°,點(diǎn)F、G、B、C共線,且G、B重合,△EFG沿折線B﹣M﹣D方向以每秒 個(gè)單位長度平移,得到△E1F1G1 , 平移過程中,點(diǎn)G1始終在折線B﹣M﹣D上,△E1F1G1與△DBM無重疊時(shí),△E1F1G1停止運(yùn)動(dòng),設(shè)△E1F1G1與△DBM重疊部分面積為S,平移時(shí)間為t,

          (1)當(dāng)△E1F1G1的頂點(diǎn)G1恰好在BD上時(shí),t=秒;
          (2)直接寫出S與t的函數(shù)關(guān)系式,及自變量t的取值范圍;
          (3)如圖2,△E1F1G1平移到G1與M重合時(shí),將△E1F1G1繞點(diǎn)M旋轉(zhuǎn)α°(0°<α<180°)得到△E2F2G1 , 點(diǎn)E1、F1分別對應(yīng)E2、F2 , 設(shè)直線F2E2與直線DM交于P,與直線DC交于Q,是否存在這樣的α,使△DPQ為直角三角形?若存在,求α的度數(shù)和DQ的長;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線 與x軸相交于點(diǎn)A、B,與y軸相交于點(diǎn)C,拋物線對稱軸與x軸相交于點(diǎn)M,

          (1)求△ABC的面積;
          (2)若p是x軸上方的拋物線上的一個(gè)動(dòng)點(diǎn),求點(diǎn)P到直線BC的距離的最大值;
          (3)若點(diǎn)P在拋物線上運(yùn)動(dòng)(點(diǎn)P異于點(diǎn)A),當(dāng)∠PCB=∠BCA時(shí),求直線PC的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】數(shù)學(xué)活動(dòng)﹣旋轉(zhuǎn)變換
          (1)如圖①,在△ABC中,∠ABC=130°,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)50°,得到△A′B′C,連接BB′,求∠A′B′B的大;
          (2)如圖②,在△ABC中,∠ABC=150°,AB=3,BC=5,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得到△A′B′C,連接BB′,以A′為圓心,A′B′長為半徑作圓. (Ⅰ)猜想:直線BB′與⊙A′的位置關(guān)系,并證明你的結(jié)論;
          (Ⅱ)連接A′B,求線段A′B的長度.

          查看答案和解析>>

          同步練習(xí)冊答案