日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (人教版)已知:二次函數(shù)y=x2-(m+1)x+m的圖象交x軸于A(x1,0)、B(x2,0)兩點,交y軸正半軸于點C,且x12+x22=10.
          (1)求此二次函數(shù)的解析式;
          (2)是否存在過點D(0,-
          52
          )的直線與拋物線交于點M、N,與x軸交于點E,使得點M、N關(guān)于點E對稱?若存在,求直線MN的解析式;若不存在,請說明理由.
          分析:(1)令y=0,即x2-(m+1)x+m=0,根據(jù)一元二次方程根與系數(shù)的關(guān)系及x12+x22=10,可求出m的值,再根據(jù)圖象與y軸正半軸交于點C,可求出函數(shù)的解析式;
          (2)根據(jù)題意,設出一次函數(shù)解析式y(tǒng)=kx-
          5
          2
          ,若能求出比例系數(shù),則可證明此直線存在.
          解答:精英家教網(wǎng)解:(1)因為x12+x22=10,
          所以(x1+x22-2x1x2=10,根據(jù)根與系數(shù)的關(guān)系,(m+1)2-2m=10,
          所以m=3,m=-3,
          又因為點C在y軸的正半軸上,
          ∴m=3,
          ∴所求拋物線的解析式為:y=x2-4x+3;

          (2)過點D(0,-
          5
          2
          )的直線與拋物線交于M(XM,YM)、N(XN,YN)兩點,與x軸交于點E,使得M、N兩點關(guān)于點E對稱.
          設直線MN的解析式為:y=kx-
          5
          2
          ,
          則有:YM+YN=0,(6分)
          y=x2-4x+3
          y=kx-
          5
          2
          ,
          x2-4x+3=kx-
          5
          2
          ,
          移項后合并同類項得x2-(k+4)x+
          11
          2
          =0,
          ∴xM+xN=4+k.
          ∴yM+yN=kxM-
          5
          2
          +kxN-
          5
          2
          =k(xM+xN)-5=0,
          ∴yM+yN=k(xM+xN)=5,
          即k(k+4)-5=0,
          ∴k=1或k=-5.
          當k=-5時,方程x2-(k+4)x+
          11
          2
          =0的判別式△<0,直線MN與拋物線無交點,
          ∴k=1,
          ∴直線MN的解析式為y=x-
          5
          2
          ,
          ∴此時直線過一、三、四象限,與拋物線有交點;
          ∴存在過點D(0,-
          5
          2
          )的直線與拋物線交于M,N兩點,與x軸交于點E.使得M、N兩點關(guān)于點E對稱.
          點評:此題巧妙利用了一元二次方程根與系數(shù)的關(guān)系.在(2)中,將直線與拋物線的交點問題轉(zhuǎn)化為根與系數(shù)的關(guān)系解答,考查了同學們的整體思維能力.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源:第6章《二次函數(shù)》中考題集(45):6.4 二次函數(shù)的應用(解析版) 題型:解答題

          (人教版)已知:二次函數(shù)y=x2-(m+1)x+m的圖象交x軸于A(x1,0)、B(x2,0)兩點,交y軸正半軸于點C,且x12+x22=10.
          (1)求此二次函數(shù)的解析式;
          (2)是否存在過點D(0,-)的直線與拋物線交于點M、N,與x軸交于點E,使得點M、N關(guān)于點E對稱?若存在,求直線MN的解析式;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:第2章《二次函數(shù)》中考題集(46):2.8 二次函數(shù)的應用(解析版) 題型:解答題

          (人教版)已知:二次函數(shù)y=x2-(m+1)x+m的圖象交x軸于A(x1,0)、B(x2,0)兩點,交y軸正半軸于點C,且x12+x22=10.
          (1)求此二次函數(shù)的解析式;
          (2)是否存在過點D(0,-)的直線與拋物線交于點M、N,與x軸交于點E,使得點M、N關(guān)于點E對稱?若存在,求直線MN的解析式;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(41):20.5 二次函數(shù)的一些應用(解析版) 題型:解答題

          (人教版)已知:二次函數(shù)y=x2-(m+1)x+m的圖象交x軸于A(x1,0)、B(x2,0)兩點,交y軸正半軸于點C,且x12+x22=10.
          (1)求此二次函數(shù)的解析式;
          (2)是否存在過點D(0,-)的直線與拋物線交于點M、N,與x軸交于點E,使得點M、N關(guān)于點E對稱?若存在,求直線MN的解析式;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(41):23.5 二次函數(shù)的應用(解析版) 題型:解答題

          (人教版)已知:二次函數(shù)y=x2-(m+1)x+m的圖象交x軸于A(x1,0)、B(x2,0)兩點,交y軸正半軸于點C,且x12+x22=10.
          (1)求此二次函數(shù)的解析式;
          (2)是否存在過點D(0,-)的直線與拋物線交于點M、N,與x軸交于點E,使得點M、N關(guān)于點E對稱?若存在,求直線MN的解析式;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案