日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,拋物線軸交于兩點,與軸相交于點.連結AC、BC,B、C兩點的坐標分別為B(1,0)、,且當x=-10和x=8時函數(shù)的值相等.

          【小題1】求a、b、c的值;
          【小題2】若點同時從點出發(fā),均以每秒1個單位長度的速度分別沿邊運動,其中一個點到達終點時,另一點也隨之停止運動.連結,將沿翻折,當運動時間為幾秒時,點恰好落在邊上的處?并求點的坐標及四邊形的面積;
          【小題3】上下平移該拋物線得到新的拋物線,設新拋物線的頂點為D,對稱軸與x軸的交點為E,若△ODE與△OBC相似,求新拋物線的解析式。

          【小題1】
          ∵當x=-10和x=8時函數(shù)的值相等
          ∴拋物線的對稱軸為直線x=-1,
          由題意得:a+b+c=0,c=,

          【小題2】令y=0,則 x=-3或1,∴A(-3,0)易得
          ∴△ABC為直角三角形,∠ACB=90°,∠A=30°,∠B=60°
          ∴BM=BN=PN=PM,∴四邊形BNPM為菱形.
          設運動t秒后點B在AC上,
          ∵PN∥AB,∴ 
          過P作PE⊥AB于E,在RT△PBN中,

          ,四邊形的面積=
          【小題3】
          ①  當;
          ②  當;
          ③  當
          ④  當解析:
          p;【解析】略
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          如圖,拋物線與軸交于,0)、,0)兩點,且,與軸交于點,其中是方程的兩個根。(14分)

          (1)求拋物線的解析式;

          (2)點是線段上的一個動點,過點,交于點,連接,當的面積最大時,求點的坐標;

          (3)點在(1)中拋物線上,

          為拋物線上一動點,在軸上是

          否存在點,使以為頂

          點的四邊形是平行四邊形,如果存在,

          求出所有滿足條件的點的坐標,

          若不存在,請說明理由。

           

           

           

           

           

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,拋物線軸交于兩點,與軸相交于點.連結AC、BC,B、C兩點的坐標分別為B(1,0)、,且當x=-10和x=8時函數(shù)的值相等.

           

           

          1.求a、b、c的值;

          2.若點同時從點出發(fā),均以每秒1個單位長度的速度分別沿邊運動,其中一個點到達終點時,另一點也隨之停止運動.連結,將沿翻折,當運動時間為幾秒時,點恰好落在邊上的處?并求點的坐標及四邊形的面積;

          3.上下平移該拋物線得到新的拋物線,設新拋物線的頂點為D,對稱軸與x軸的交點為E,若△ODE與△OBC相似,求新拋物線的解析式。

           

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,拋物線軸交于A、B兩點,與軸交于C點,四邊形OBHC為矩形,CH的延長線交拋物線于點D(5,2),連結BC、AD.

          (1)求C點的坐標及拋物線的解析式;

          (2)將△BCH繞點B按順時針旋轉90º后再沿軸對折得到△BEF(點C與點E對應),判斷點E是否落在拋物線上,并說明理由;

          (3)設過點E的直線交AB邊于點P,交CD邊于點Q. 問是否存在點P,使直線PQ分梯形ABCD的面積為1∶3兩部分?若存在,求出P點坐標;若不存在,請說明理由.                                                                                     

                 

          查看答案和解析>>

          科目:初中數(shù)學 來源:2013屆四川省鹽邊縣紅格中學九年級下學期摸底考試數(shù)學試卷(帶解析) 題型:解答題

          如圖,拋物線軸交于兩點,與軸交于點.

          (1)請求出拋物線頂點的坐標(用含的代數(shù)式表示),兩點的坐標;
          (2)經(jīng)探究可知,的面積比不變,試求出這個比值;
          (3)是否存在使為直角三角形的拋物線?若存在,請求出;如果不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2012屆仙師中學九年級第一次月考試考試數(shù)學卷 題型:選擇題

          如圖,拋物線與軸交于,0)、,0)兩點,且,與軸交于點,其中是方程的兩個根。(14分)

          (1)求拋物線的解析式;

          (2)點是線段上的一個動點,過點,交于點,連接,當的面積最大時,求點的坐標;

          (3)點在(1)中拋物線上,

          為拋物線上一動點,在軸上是

          否存在點,使以為頂

          點的四邊形是平行四邊形,如果存在,

          求出所有滿足條件的點的坐標,

          若不存在,請說明理由。

           

           

          查看答案和解析>>

          同步練習冊答案