日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】閱讀下面材料:小昊遇到這樣一個(gè)問題:如圖1,在△ABC中,BE是AC邊上的中線,點(diǎn)D在BC邊上,,AD與BE相交于點(diǎn)P,求的值.

          小昊發(fā)現(xiàn),過點(diǎn)C作CF∥AD,交BE的延長線于點(diǎn)F,通過構(gòu)造△CEF,經(jīng)過推理和計(jì)算能夠使問題得到解決(如圖2).

          請回答:寫出的值.

          參考小昊思考問題的方法,解決問題:

          (1)如圖3,在△ABC中,點(diǎn)D在BC的延長線上,,點(diǎn)E在AC上,且.求的值;

          (2)如圖4,在△ABC中,點(diǎn)D在BC的延長線上,,點(diǎn)E在AC上,且,直接寫出的值.

          【答案】;(1);(2)

          【解析】

          如圖2,過點(diǎn)CCF∥AD,交BE的延長線于點(diǎn)F,易證△AEP≌△CEF,根據(jù)全等三角形的性質(zhì)可得AP=FC,又因PD∥FC,可得△BDP∽△BCF,由相似三角形的性質(zhì)可得,由此即可求得的值.(1)如圖3,過AAF∥BC,交BP延長線于點(diǎn)F,可得△AFE∽△CBE,根據(jù)相似三角形的性質(zhì)可得,設(shè)AF=3x,BC=2x,可得BD=3x,所以AF=BD=3x,再證明△AFP∽△DBP,即可得;(3)如圖4,過CCF∥APPBF,可得△BCF∽△BDP,根據(jù)相似三角形的性質(zhì)可得,設(shè)CF=2x,PD=3x,再證明△ECF∽△EAP,可得,所以AP=7x,AD=4x,即可求得

          解:如圖2,過點(diǎn)CCF∥AD,交BE的延長線于點(diǎn)F,

          ∴∠F=∠APF,∠FCE=∠EAP,

          ∵BEAC邊的中線,

          ∴AE=CE,

          ∴△AEP≌△CEF,

          ∴AP=FC,

          ∵PD∥FC,

          ∴△BPD≌△BFC,

          ,

          ,

          (1)如圖3,過AAF∥BC,交BP延長線于點(diǎn)F,

          ∴△AFE∽△CBE,

          ,

          ,

          設(shè)AF=3x,BC=2x,

          ,

          ∴BD=3x,

          ∴AF=BD=3x,

          ∵AF∥BD,

          ∴△AFP∽△DBP,

          =1;

          (2)如圖4,過CCF∥APPBF,

          ∴△BCF∽△BDP,

          ,

          設(shè)CF=2x,PD=3x,

          ∵CF∥AP,

          ∴△ECF∽△EAP,

          ∴AP=7x,AD=4x,

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正方形ABCD中,過B作一直線與CD相交于點(diǎn)E,過AAF垂直BE于點(diǎn)F,過CCG垂直BE于點(diǎn)G,在FA上截取FH=FB,再過HHP垂直AFABP.若CG=3.則△CGE與四邊形BFHP的面積之和為 _________ 

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分線BE交AD于點(diǎn)F,AG平分∠DAC.給出下列結(jié)論:①∠BAD=∠C; ②∠AEF=∠AFE; ③∠EBC=∠C;④AG⊥EF.正確結(jié)論有( )

          A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,點(diǎn)O在AB上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過點(diǎn)D,分別交AC,AB于點(diǎn)E,F(xiàn).

          (1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;

          (2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小杰在學(xué)完了《銳角三角比》知識后回家整理筆記,寫下了下列四句活:(1)銳角A的正弦的值的范圍是0<sinA<1;(2)根據(jù)正切和余切的意義,可以得到tanA=;(3)在Rt△ABC中,如∠C=90°,則cosB=sinA;(4)在Rt△ABC中,如∠C=90°,則cotB=tanA;請你判斷上述語句正確的個(gè)數(shù)是(  )

          A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在鈍角三角形ABCAB=6cm,AC=12cm,動(dòng)點(diǎn)DA點(diǎn)出發(fā)到B點(diǎn)止,動(dòng)點(diǎn)EC點(diǎn)出發(fā)到A點(diǎn)止.點(diǎn)D運(yùn)動(dòng)的速度為1cm/,點(diǎn)E運(yùn)動(dòng)的速度為2cm.如果兩點(diǎn)同時(shí)運(yùn)動(dòng),那么當(dāng)以點(diǎn)A、D、E為頂點(diǎn)的三角形與△ABC相似時(shí)運(yùn)動(dòng)的時(shí)間是( )

          A. 32.8 B. 34.8 C. 14 D. 16

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】1)如圖1,已知ABl,DEl,垂足分別為B、E,且Cl上一點(diǎn),∠ACD=90°.求證:△ABCCED

          2)如圖2,在四邊形ABCD中,ABC=90°,AB=6,BC=8,CD=20DA=.求BD的長為_______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在菱形ABCD中,AB=6,tan∠ABC=2,點(diǎn)E是射線DA上的一個(gè)動(dòng)點(diǎn),連接CE,將線段CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)角α(α=∠BCD,得到對應(yīng)線段CF

          1)求證:BCEDCF;

          2)求線段DF的長度的最小值;

          3)如圖2,連接BD、EFBDEC、EF于點(diǎn)P、Q.當(dāng)△EPQ是直角三角形時(shí),求DE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方形ABCD的邊長為5,點(diǎn)A的坐標(biāo)為(﹣40),點(diǎn)By軸上,若反比例函數(shù)y=k≠0)的圖象過點(diǎn)C,則該反比例函數(shù)的表達(dá)式為_______

          查看答案和解析>>

          同步練習(xí)冊答案