日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),已知拋物線y=a(x+1)(x﹣3)與x軸相交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸正半軸交于點(diǎn)C,且∠ABC=45°.

          (1)求a的值;
          (2)如圖2,點(diǎn)D在線段BC上(不與C重合),當(dāng)AD=AC時(shí),求D點(diǎn)坐標(biāo);

          (3)如圖3,在(2)的條件下,E為拋物線上一點(diǎn),且在第一象限,過(guò)E作EF∥AD與AC相交于點(diǎn)F,當(dāng)EF被BC平分時(shí),求點(diǎn)E坐標(biāo).

          【答案】
          (1)

          解:拋物線y=a(x+1)(x﹣3),

          令y=0,則有a(x+1)(x﹣3)=0,

          解得:x=﹣1,或x=3,

          ∴A(﹣1,0),B(3,0),

          ∵∠ABC=45°,∠BOC=90°,

          ∴OB=OC=3,

          ∴C(0,3),

          將點(diǎn)C(0,3)代入二次函數(shù)解析式得:

          3=a×(0+1)×(0﹣3),

          解得:a=﹣1


          (2)

          解:∵點(diǎn)A(﹣1,0),點(diǎn)C(0,3),點(diǎn)B(3,0),

          ∴AC=

          又∵∠ABC=45°,

          ∴直線BC的解析式為y=﹣x+3,

          設(shè)點(diǎn)D的坐標(biāo)為(m,﹣m+3),

          由兩點(diǎn)間的距離公式可知:AD= ,

          ∵AD=AC= ,

          ∴有 =

          解得:m=0(舍去),m=2,

          此時(shí)﹣m+3=﹣2+3=1.

          故當(dāng)AD=AC時(shí),D點(diǎn)坐標(biāo)為(2,1)


          (3)

          解:設(shè)直線AD的解析式為y=kx+b,

          將A(﹣1,0),D(2,1)代入,得

          ,解得

          ∴直線AD的解析式為y= x+

          ∵EF∥AD,

          ∴設(shè)直線EF的解析式為y= x+c.

          令﹣x+3= x+c,則有x= (3﹣c).

          將y= x+c代入y=﹣1(x+1)(x﹣3)中,得

          ﹣(3﹣c)=0,

          由根與系數(shù)的關(guān)系可知:x1+x2=﹣ =

          ∵EF被BC平分,

          ∴EF與BC的交點(diǎn)的橫坐標(biāo)為 ,

          (3﹣c)×2= ,解得:c=

          解方程 ﹣(3﹣ )=0,得:x1= ,x2=

          ∵點(diǎn)E在第一象限,

          ∴點(diǎn)E的橫坐標(biāo)為

          將x= 代入y= x+ 中得,y=

          ∴點(diǎn)E的坐標(biāo)為( ,


          【解析】(1)通過(guò)拋物線解析式求出點(diǎn)AB坐標(biāo),利用等腰直角三角形性質(zhì)求出C點(diǎn)坐標(biāo),代入拋物線即可求出a值;(2)由B、C點(diǎn)坐標(biāo)可得出直線BC的解析式,設(shè)出D點(diǎn)坐標(biāo)(m,﹣m+3),由兩點(diǎn)間的距離公式可表示出AD的長(zhǎng)度,再由AC=AD找出關(guān)于m的一元二次方程,解方程求出m的值,代入到D點(diǎn)坐標(biāo)中即可得出結(jié)論.(3)由A、D點(diǎn)坐標(biāo)可得出直線AD的解析式,由EF平行AD設(shè)出直線EF的解析式,代入到拋物線中可得到關(guān)于x的一元二次方程,根據(jù)根與系數(shù)的關(guān)系表示出兩根之和,再由直線EF和BC的解析式可找出交點(diǎn)的坐標(biāo),根據(jù)EF被BC平分,可知交點(diǎn)的橫坐標(biāo)的2倍為前面一元二次方程的兩根之和,解方程即可得出直線EF的解析式,從而得出點(diǎn)E的坐標(biāo).
          【考點(diǎn)精析】通過(guò)靈活運(yùn)用拋物線與坐標(biāo)軸的交點(diǎn),掌握一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).即可以解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如表記錄了一名球員在罰球線上投籃的結(jié)果.那么,這名球員投籃一次,投中的概率約為(精確到0.1).

          投籃次數(shù)(n)

          50

          100

          150

          200

          250

          300

          500

          投中次數(shù)(m)

          28

          60

          78

          104

          123

          152

          251

          投中頻率(m/n)

          0.56

          0.60

          0.52

          0.52

          0.49

          0.51

          0.50

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰Rt△,如此繼續(xù)下去,直到所畫直角三角形的斜邊與△ABC的BC邊在同一直線上時(shí)為止,此時(shí),這個(gè)直角三角形的斜邊長(zhǎng)為(

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,△COD是△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)40°后得到的圖形,若點(diǎn)C恰好落在AB上,且∠AOD的度數(shù)為90°,則∠B的度數(shù)是(

          A.40°
          B.50°
          C.60°
          D.70°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AD=18,點(diǎn)E在AC上且CE= AC,連接BE,與AD相交于點(diǎn)F.若BE=15,則△DBF的周長(zhǎng)是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在△ABD中,AB=AD,以AB為直徑的⊙F交BD于點(diǎn)C,交AD與點(diǎn)E,CG⊥AD于點(diǎn)G.

          (1)求證:GC是⊙F的切線;
          (2)填空:①若△BCF的面積為15,則△BDA的面積為
          ②當(dāng)∠GCD的度數(shù)為時(shí),四邊形EFCD是菱形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在菱形ABCD中,AB=8,點(diǎn)E,F(xiàn)分別在AB,AD上,且AE=AF,過(guò)點(diǎn)E作EG∥AD交CD于點(diǎn)G,過(guò)點(diǎn)F作FH∥AB交BC于點(diǎn)H,EG與FH交于點(diǎn)O.當(dāng)四邊形AEOF與四邊形CGOH的周長(zhǎng)之差為12時(shí),AE的值為(
          A.6.5
          B.6
          C.5.5
          D.5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】直線y= x+2 與x軸,y軸分別交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),將△OMN沿直線MN翻折后得到△PMN,則點(diǎn)P的坐標(biāo)為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知△ABC中,∠B=90°,BC=3,AB=4,D是邊AB上一點(diǎn),DE∥BC交AC于點(diǎn)E,將△ADE沿DE翻折得到△A′DE,若△A′EC是直角三角形,則AD長(zhǎng)為

          查看答案和解析>>

          同步練習(xí)冊(cè)答案