日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)拋物線y=ax2+bx+c與X軸交于兩不同的點(diǎn)A(-1,0),B(m,0),(點(diǎn)A在點(diǎn)B的左邊),與y軸的交點(diǎn)為點(diǎn)C(0,-2),且∠ACB=90°.
          (1)求m的值和該拋物線的解析式;
          (2)若點(diǎn)D為該拋物線上的一點(diǎn),且橫坐標(biāo)為1,點(diǎn)E為過(guò)A點(diǎn)的直線y=x+1與該拋物線的另一交點(diǎn).在X軸上是否存在點(diǎn)P,使得以P、B、D為頂點(diǎn)的三角形與△AEB相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
          (3)連接AC、BC,矩形FGHQ的一邊FG在線段AB上,頂點(diǎn)H、Q分別在線段AC、BC上,若設(shè)F點(diǎn)坐標(biāo)為(t,0),矩形FGHQ的面積為S,當(dāng)S取最大值時(shí),連接FH并延長(zhǎng)至點(diǎn)M,使HM=k•FH,若點(diǎn)M不在該拋物線上,求k的取值范圍.

          解:(1)令x=0,得y=-2,
          ∴C(0,-2),
          ∵∠ACB=90°,CO⊥AB,
          ∴△AOC∽△COB,
          ∴OA•OB=OC2,
          ∴OB=,
          ∴m=4,
          將A(-1,0),B(4,0)代入y=ax2+bx-2,
          ,
          ∴拋物線的解析式為y=x2-x-2.

          (2)D(1,n)代入y=x2-x-2,得n=-3,
          可得 (不合題意舍去),
          ∴E(6,7).
          過(guò)E作EH⊥x軸于H,則H(6,0),
          ∴AH=EH=7,
          ∴∠EAH=45°.
          過(guò)D作DF⊥x軸于F,則F(1,0),
          ∴BF=DF=3,
          ∴∠DBF=45°,
          ∴∠EAH=∠DBF=45°,
          ∴∠DBH=135°,
          90°<∠EBA<135°.
          則點(diǎn)P只能在點(diǎn)B的左側(cè),有以下兩種情況:
          ①若△DBP1∽△EAB,則 ,
          ∴BP1===,
          ∴OP1=4-=,
          ∴P1,0).
          ②若△DBP2∽△BAE,則 ,
          ∴BP2===,
          ∴OP2=-4=
          ∴P2(-,0).
          綜合①、②,得點(diǎn)P的坐標(biāo)為:P1,0)或P2(-,0).

          (3)∵HQ∥AB
          ∴△CHQ∽△CAB
          ∴HQ:AB=CR:CO,
          即:設(shè)HG=x,則=
          解得:HQ=-x+5
          ∴矩形的面積S=HG•HQ=-x2+5x
          當(dāng)x=-=1時(shí),面積取得最大值.則H,R,Q的縱坐標(biāo)是-1.
          則HQ=-×1+5=
          設(shè)直線AC的解析式是y=kx+b
          根據(jù)題意得:,解得:
          則AC的解析式是:y=-2x-2
          在解析式中,令x=-1,解得:y=0
          則H的坐標(biāo)是(-,-1).F的坐標(biāo)是(2,0).則HF=
          設(shè)直線FH的解析式是y=kx+b
          根據(jù)題意得:
          解得:,
          則直線FH的解析式是y=x-
          解方程組:
          解得:x=
          當(dāng)直線與拋物線相交時(shí),k====
          則k的范圍是:k≠且k≠
          分析:(1)根據(jù)拋物線的解析式可知C點(diǎn)坐標(biāo)為(0,-2),即OC=2,由于∠ACB=90度,根據(jù)射影定理OC2=OA•AB,可求出AB的長(zhǎng),進(jìn)而可求出B點(diǎn)的坐標(biāo),也就求出了m的值,然后將A、B的坐標(biāo)代入拋物線中即可求出其解析式.
          (2)可先根據(jù)拋物線的解析式和直線AE的解析式求出E點(diǎn)和D點(diǎn)的坐標(biāo),經(jīng)過(guò)求解不難得出∠FAB=∠DBO=45°,因此本題要分兩種情況進(jìn)行討論:①∠DPB=∠ABE;②∠PDB=∠ABE.可根據(jù)對(duì)應(yīng)的相似三角形得出的成比例線段求出OP的長(zhǎng),進(jìn)而可求出P點(diǎn)的坐標(biāo).
          (3)根據(jù)相似三角形對(duì)應(yīng)邊上高的比等于相似比,以及二次函數(shù)的性質(zhì)即可求得H,F(xiàn)的坐標(biāo),根據(jù)相似三角形的性質(zhì),即可求得直線HF與拋物線的交點(diǎn)的橫坐標(biāo),即可求得對(duì)應(yīng)的k的值,從而確定當(dāng)不與拋物線相交時(shí)k的范圍.
          點(diǎn)評(píng):本題考查二次函數(shù)解析式的確定,二次函數(shù)求最值、函數(shù)圖象交點(diǎn)、三角形相似的性質(zhì),等知識(shí)及綜合應(yīng)用知識(shí)、解決問(wèn)題的能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知二次函數(shù)y=ax2+bx+c(a≠0)圖象經(jīng)過(guò)A(1,1)、B (2,4)和C三點(diǎn).
          (1)用含a的代數(shù)式分別表示b、c;
          (2)設(shè)拋物線y=ax2+bx+c頂點(diǎn)坐標(biāo)(p,q),用含a的代數(shù)式分別表示p、q;
          (3)當(dāng)a>0時(shí),求證:p<
          32
          ,q≤1.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)拋物線y=ax2+bx-2與x軸交于兩個(gè)不同的點(diǎn)A(-1,0)、B(m,0),與y軸交于點(diǎn)C,且∠精英家教網(wǎng)ACB=90度.
          (1)求m的值和拋物線的解析式;
          (2)已知點(diǎn)D(1,n)在拋物線上,過(guò)點(diǎn)A的直線y=x+1交拋物線于另一點(diǎn)E.若點(diǎn)P在x軸上,以點(diǎn)P、B、D為頂點(diǎn)的三角形與△AEB相似,求點(diǎn)P的坐標(biāo);
          (3)在(2)的條件下,△BDP的外接圓半徑等于
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,設(shè)拋物線y=ax2+bx+c與x軸交于兩個(gè)不同的點(diǎn)A(-1,0),B(m精英家教網(wǎng),0),與y軸交于點(diǎn)C(0,-2),且∠ACB=90度.
          (1)求m的值和拋物線的解析式;
          (2)已知點(diǎn)D(1,n)在拋物線上,過(guò)點(diǎn)A的直線y=x+1交拋物線于另一點(diǎn)E,求點(diǎn)D和點(diǎn)E的坐標(biāo);
          (3)在x軸上是否存在點(diǎn)P,使以點(diǎn)P,B,D為頂點(diǎn)的三角形與三角形AEB相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)設(shè)拋物線y=ax2+bx+c與x軸交于兩個(gè)不同的點(diǎn)A(-l,0)、B(4,0),與y軸交于點(diǎn)C(0,2).
          (1)求拋物線的解析式:
          (2)問(wèn)拋物線上是否存在一點(diǎn)M,使得S△ABM=2S△ABC?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
          (3)已知點(diǎn)D(1,n)在拋物線上,過(guò)點(diǎn)A的直線y=-x-1交拋物線于另一點(diǎn)E.
          ①求tan∠ABD的值:
          ②若點(diǎn)P在x軸上,以點(diǎn)P、B、D為頂點(diǎn)的三角形與△AEB相似,求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知拋物線y=ax2+bx+c與直線y=mx+n相交于兩點(diǎn),這兩點(diǎn)的坐標(biāo)分別是(0,-
          12
          )和(m-b,精英家教網(wǎng)m2-mb+n),其中 a,b,c,m,n為實(shí)數(shù),且a,m不為0.
          (1)求c的值;
          (2)設(shè)拋物線y=ax2+bx+c與x軸的兩個(gè)交點(diǎn)是(x1,0)和(x2,0),求x1?x2的值;
          (3)當(dāng)-1≤x≤1時(shí),設(shè)拋物線y=ax2+bx+c上與x軸距離最大的點(diǎn)為P(x0,y0),求這時(shí)|y0丨的最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案