日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,直角梯形ABCD中,AB//DC,∠DAB=90°,AD=2DC=4,AB=6.動(dòng)點(diǎn)M以每秒1個(gè)單位長(zhǎng)的速度,從點(diǎn)A沿線段AB向點(diǎn)B運(yùn)動(dòng);同時(shí)點(diǎn)P以相同的速度,從點(diǎn)C沿折線C﹣D﹣A向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)M到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).過(guò)點(diǎn)M作直線l//AD,與線段CD的交點(diǎn)為E,與折線A﹣C﹣B的交點(diǎn)為Q.點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒).

          (1)當(dāng)t=0.5時(shí),求線段QM的長(zhǎng);
          (2)當(dāng)0<t<2時(shí),如果以C、P、Q為頂點(diǎn)的三角形為直角三角形,求t的值;
          (3)當(dāng)t>2時(shí),連接PQ交線段AC于點(diǎn)R.請(qǐng)?zhí)骄? 是否為定值,若是,試求這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

          【答案】
          (1)

          解:過(guò)點(diǎn)C作CF⊥AB于F,則四邊形AFCD為矩形.

          ∴CF=4,AF=2,

          此時(shí),Rt△AQM∽R(shí)t△ACF,

          = ,

          = ,

          ∴QM=1


          (2)

          解:∵∠DCA為銳角,故有兩種情況:

          ①當(dāng)∠CPQ=90°時(shí),點(diǎn)P與點(diǎn)E重合,

          此時(shí)DE+CP=CD,即t+t=2,∴t=1,在0<t<2內(nèi),

          ②當(dāng)∠PQC=90°時(shí),如備用圖1,

          此時(shí)Rt△PEQ∽R(shí)t△QMA,∴ = ,

          由(1)知,EQ=EM﹣QM=4﹣2t,

          而PE=PC﹣CE=PC﹣(DC﹣DE)=t﹣(2﹣t)=2t﹣2,

          = ,

          ∴t= ,在0<t<2內(nèi);

          綜上所述,t=1或


          (3)

          解: 為定值.

          當(dāng)t>2時(shí),如備用圖2,PA=DA﹣DP=4﹣(t﹣2)=6﹣t,

          由(1)得,BF=AB﹣AF=4,

          ∴CF=BF,

          ∴∠CBF=45°,

          ∴QM=MB=6﹣t,

          ∴QM=PA,

          ∵AB//DC,∠DAB=90°,

          ∴四邊形AMQP為矩形,

          ∴PQ//AB,

          ∴△CRQ∽△CAB,

          = = = =


          【解析】(1)過(guò)點(diǎn)C作CF⊥AB于F,則四邊形AFCD為矩形,易知CF=4,AF=2,利用平行線分線段成比例定理的推論可知Rt△AQM∽R(shí)t△ACF,那么可得比例線段,從而求出QM;(2)由于∠DCA為銳角,故有兩種情況:
          ①當(dāng)∠CPQ=90°時(shí),點(diǎn)P與點(diǎn)E重合,可得DE+CP=CD,從而可求t;②當(dāng)∠PQC=90°時(shí),如備用圖1,容易證出Rt△PEQ∽R(shí)t△QMA,再利用比例線段,結(jié)合EQ=EM﹣QM=4﹣2t,可求t;(3) 為定值.當(dāng)t>2時(shí),如備用圖2,先證明四邊形AMQP為矩形,再利用平行線分線段成比例定理的推論可得△CRQ∽△CAB,再利用比例線段可求
          【考點(diǎn)精析】關(guān)于本題考查的相似三角形的應(yīng)用,需要了解測(cè)高:測(cè)量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長(zhǎng)成比例”的原理解決;測(cè)距:測(cè)量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解才能得出正確答案.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(1)用公式法解方程:x2﹣5x+3=0;

          (2)用因式分解法解方程:3(x﹣3)2=2x﹣6

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知:如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上運(yùn)動(dòng),當(dāng)△ODP是腰長(zhǎng)為5的等腰三角形時(shí),則P點(diǎn)的坐標(biāo)為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在如圖所示的平面直角坐標(biāo)系中表示下面各點(diǎn):

          A0,3);B1-3);C3-5);D-3,-5);E3,5);F5,7);G50

          1A點(diǎn)到原點(diǎn)O的距離是 。

          2)將點(diǎn)C軸的負(fù)方向平移6個(gè)單位,它與點(diǎn) 重合。

          3)連接CE,則直線CE軸是什么關(guān)系?

          4)點(diǎn)F分別到、軸的距離是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,拋物線y= x2 x﹣2與x軸交于A、B兩點(diǎn),點(diǎn)P(m,n)(n<0)為拋物線上一個(gè)動(dòng)點(diǎn),當(dāng)∠APB為鈍角時(shí),則m的取值范圍(
          A.﹣1<m<0
          B.﹣1<m<0或3<m<4
          C.0<m<3或m>4
          D.m<﹣1或0<m<3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】列方程解應(yīng)用題:五蓮縣新瑪特購(gòu)物中心第一次用5000元購(gòu)進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進(jìn)價(jià)和售價(jià)如下表(注:獲利=售價(jià)﹣進(jìn)價(jià))

          進(jìn)價(jià)(元/件)

          20

          30

          售價(jià)(元/件)

          29

          40

          (1)新瑪特購(gòu)物中心將第一次購(gòu)進(jìn)的甲、乙兩種商品全部賣完后一共可獲得多少利潤(rùn)?

          (2)該購(gòu)物中心第二次以第一次的進(jìn)價(jià)又購(gòu)進(jìn)甲、乙兩種商品,其中甲種商品的件數(shù)不變,乙種商品的件數(shù)是第一次的3倍;甲商品按原價(jià)銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得總利潤(rùn)比第一次獲得的總利潤(rùn)多160元,求第二次乙種商品是按原價(jià)打幾折銷售?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,下列能判定AB∥CD的條件有( )個(gè).

          1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

          A. 1 B. 2 C. 3 D. 4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,直線y=x+1與y軸交于點(diǎn)A1 , 依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1 , 使得點(diǎn)A1、A2、…,An在直線x+1上,點(diǎn)C1、C2、…,Cn在x軸上,則點(diǎn)Bn的坐標(biāo)是( )

          A.(2n﹣1,2n﹣1
          B.(2n﹣1+1,2n﹣1
          C.(2n﹣1,2n﹣1)
          D.(2n﹣1,n)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知點(diǎn)O是△ABC的兩條角平分線的交點(diǎn),

          (1)若∠A=30°,則∠BOC的大小是   ;

          (2)若∠A=60°,則∠BOC的大小是   ;

          (3)若∠A=n°,則∠BOC的大小是多少?試用學(xué)過(guò)的知識(shí)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案