日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1,已知△ABC,AB=AC,以邊AB為直徑的⊙O交BC于點(diǎn)D,交AC于點(diǎn)E,連接DE.
          (1)求證:DE=DC.
          (2)如圖2,連接OE,將∠EDC繞點(diǎn)D逆時(shí)針旋轉(zhuǎn),使∠EDC的兩邊分別交OE的延長(zhǎng)線于點(diǎn)F,AC的延長(zhǎng)線于點(diǎn)G.試探究線段DF、DG的數(shù)量關(guān)系.
          分析:(1)利用院內(nèi)接四邊形的性質(zhì)得到∠DEC=∠B,然后利用等角對(duì)等邊得到結(jié)論.
          (2)利用旋轉(zhuǎn)的性質(zhì)及圓內(nèi)接四邊形的性質(zhì)證得△EDF≌△CDG后即可得到結(jié)論.
          解答:.(1)證明:∵四邊形ABDE內(nèi)接于⊙O,
          ∴∠B+∠AED=180°
          ∵∠DEC+∠AED=180°
          ∴∠DEC=∠B
          ∵AB=AC
          ∴∠C=∠B
          ∴∠DEC=∠C
          ∴DE=DC.

          (2)證明:∵四邊形ABDE內(nèi)接于⊙O,
          ∴∠A+∠BDE=180°
          ∵∠EDC+∠BDE=180°
          ∴∠A=∠EDC,
          ∵OA=OE
          ∴∠A=∠OEA,
          ∵∠OEA=∠CEF
          ∴∠A=∠CEF
          ∴∠EDC=∠CEF,
          ∵∠EDC+∠DEC+∠DCE=180°
          ∴∠CEF+∠DEC+∠DCE=180°
          即∠DEF+∠DCE=180°,
          又∵∠DCG+∠DCE=180°
          ∴∠DEF=∠DCG,
          ∵∠EDC旋轉(zhuǎn)得到∠FDG
          ∴∠EDC=∠FDG
          ∴∠EDC-∠FDC=∠FDG-∠FDC
          即∠EDF=∠CDG,
          ∵DE=DC
          ∴△EDF≌△CDG(ASA),
          ∴DF=DG.
          點(diǎn)評(píng):本題考查了圓內(nèi)接四邊形、全等三角形的判定與性質(zhì)及等腰三角形的性質(zhì),考查的知識(shí)點(diǎn)比較多,難度一般.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)定義:若某個(gè)圖形可分割為若干個(gè)都與他相似的圖形,則稱這個(gè)圖形是自相似圖形.
          探究:
          (1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個(gè)與它自己相似的小直角三角形嗎?若能,請(qǐng)?jiān)趫D甲中畫(huà)出分割線,并說(shuō)明理由.
          (2)一般地,“任意三角形都是自相似圖形”,只要順次連接三角形各邊中點(diǎn),則可將原三分割為四個(gè)都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連接各邊中點(diǎn)所進(jìn)行的分割,稱為1階分割(如圖1);把1階分割得出的4個(gè)三角形再分別順次連接它的各邊中點(diǎn)所進(jìn)行的分割,稱為2階分割(如圖2)…依次規(guī)則操作下去.n階分割后得到的每一個(gè)小三角形都是全等三角形(n為正整數(shù)),設(shè)此時(shí)小三角形的面積為SN
          ①若△DEF的面積為10000,當(dāng)n為何值時(shí),2<Sn<3?(請(qǐng)用計(jì)算器進(jìn)行探索,要求至少寫(xiě)出三次的嘗試估算過(guò)程)
          ②當(dāng)n>1時(shí),請(qǐng)寫(xiě)出一個(gè)反映Sn-1,Sn,Sn+1之間關(guān)系的等式.(不必證明)精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,若已知△ABC中,D、E分別為AB、AC的中點(diǎn),則可得DE∥BC,且DE=
          12
          BC.根據(jù)上面的結(jié)論:
          (1)你能否說(shuō)出順次連接任意四邊形各邊中點(diǎn),可得到一個(gè)什么特殊四邊形并說(shuō)明理由;
          (2)如果將(1)中的“任意四邊形”改為條件是“平行四邊形”或“菱形”或“矩形”或“等腰梯形”,那么它們的結(jié)論又分別怎樣呢?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•德州)(1)如圖1,已知△ABC,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE,連接BE,CD,請(qǐng)你完成圖形,并證明:BE=CD;(尺規(guī)作圖,不寫(xiě)作法,保留作圖痕跡);
          (2)如圖2,已知△ABC,以AB、AC為邊向外作正方形ABFD和正方形ACGE,連接BE,CD,BE與CD有什么數(shù)量關(guān)系?簡(jiǎn)單說(shuō)明理由;
          (3)運(yùn)用(1)、(2)解答中所積累的經(jīng)驗(yàn)和知識(shí),完成下題:
          如圖3,要測(cè)量池塘兩岸相對(duì)的兩點(diǎn)B,E的距離,已經(jīng)測(cè)得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (1)添線補(bǔ)全如圖1幾何體的三視圖.

          (2)如圖2,已知△ABC.請(qǐng)你確定一點(diǎn)P,使PB=PC,且點(diǎn)P到∠B的兩邊距離相等.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖1,已知△ABC中,AB=BC=1,∠ABC=90°,把一塊含30°角的直角三角板DEF的直角頂點(diǎn)D放在AC的中點(diǎn)上(直角三角板的短直角邊為DE,長(zhǎng)直角邊為DF),將直角三角板DEF繞D點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn).
          (1)在圖1中,DE交邊AB于M,DF交邊BC于N
          ①證明:DM=DN
          ②在這一旋轉(zhuǎn)過(guò)程中,直角三角板DEF與△ABC的重疊部分為四邊形DMBN,請(qǐng)說(shuō)明四邊形DMBN的面積是否發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明是如何變化的?若不發(fā)生變化,求出其面積
          (2)繼續(xù)旋轉(zhuǎn)至如圖2的位置,延長(zhǎng)AB交DE于M,延長(zhǎng)BC交DF于N,DM=DN是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案